Given,
Need to evaluate the given equation
⇒ we know that cos(90 - θ) = sinθ
∴ cos 52° = cos(90 - 38)°
= sin 38°
⇒
= 1
Let us evaluate :
Given,
Need to evaluate the given equation
⇒ we know that sec(90 - θ) = cosecθ
∴ sec 11° = sec(90 - 79)°
= cosec 79°
⇒
= 1
Let us evaluate :
Given,
Need to evaluate the given equation
⇒ we know that tan(90 - θ) = cotθ
∴ tan 27° = tan(90 - 63)°
= cot 63°
⇒
= 1
Let us show that:
sin66° - cos24° = 0
Given, sin66° - cos24° = 0
Need to prove the given equation as zero
⇒ we know that cos(90 - θ) = sinθ
∴ cos24° = cos(90 - 66)°
= sin66° - - - eq (1)
⇒ sin66° - cos24° = 0
[substitute eq(1)]
⇒ sin66° - sin66° = 0
Hence, LHS = RHS
Let us show that:
cos257° + cos233° = 1
Given, cos257° + cos2 33°
Need to prove the given equation as one
⇒ we know that cos(90 - θ) = sinθ
∴ cos33° = cos(90 - 57)°
= sin57° - - - eq (1)
⇒ Substitute eq(1) in the given equation
∴ cos257° + sin257°
⇒ we know that, sin2θ + cos2θ = 1
∴ cos257° + sin257° = 1
Hence, proved
Let us show that:
cos2 75° - sin215° = 0
Given, cos275° - sin215°
Need to prove the given equation as zero
⇒ we know that cos(90 - θ) = sinθ
∴ cos75° = cos(90 - 15)°
= sin15° - - - eq (1)
⇒ Substitute eq(1) in the given equation
∴ cos275° - sin215° =
sin215° - sin215° = 0
Hence, proved
Let us show that:
cosec248° - tan242° = 1
Given, cosec2 48° - tan2 42°
Need to prove the given equation as one
⇒ we know that tan(90 - θ) = cotθ
∴ tan42° = tan(90 - 48)°
= cot48° - - - eq (1)
⇒ Substitute eq(1) in the given equation
∴ cosec2 48° - cot248°
⇒ we know that
And
∴
=
[ sin2θ + cos2θ = 1
∴ 1 - cos2θ = sin2θ]
⇒
= 1
∴ cosec2 48° - tan2 42° = 1
Hence, proved
Let us show that:
sec70°sin20° + cos20°cosec70° = 2
Given, sec70°sin20° + cos20°cosec70° = 2
Need to prove the given equation as two
⇒ we know that sec(90 - θ) = cosecθ and cosec(90 - θ) = secθ
∴ sec70° = sec(90 - 20)°
= cosec20° - - - eq (1)
And cosec70° = cosec(90 - 20)
= sec20° - - - - - eq(2)
⇒ Substitute eq(1) and eq(2) in the given equation
∴ cosec20°sin20° + cos20°sec20° = 2
⇒
[ and ]
⇒ = 2
⇒ 2 = 2
Hence, proved
If two angles and are complementary angle, let us show that
sin2α + sin2β = 1
Given, two angles are complementary = 90°
⇒ sin2α + sin2β
⇒ sin2α + sin2(90 - α)
⇒ sin2α + cos2α
= 1
[sin2θ + cos2θ = 1]
If two angles and are complementary angle, let us show that
cotβ + cosβ =
Given, cotβ + cosβ
[
⇒
= cosβ()
= cosβ( )
=
=
=
If two angles and are complementary angle, let us show that
Given,
⇒
⇒ [ and ]
⇒
⇒
[cos α = cos(90 - β)]
⇒
⇒
⇒
[sin2θ + cos2θ = 1]
⇒
= 1
If sin 17° = , let us show that sec 10° - sin73° =
Given,
To show,
[sec θ =
⇒
⇒ sin73° = sin(90 - 17) = cos17
⇒
=
[sin2θ + cos2θ = 1]
=
=
=
=
=
Let us show that sec212° -
Given, = 1
[sec =
⇒ tan78 = tan(90 - 12) = cot12
∴ = 1
⇒
=
=
=
= 1
Hence, proved
∠A + ∠B = 90°, let us show that
Given, ∠A + ∠B = 90°
To show that
⇒
⇒ tanB = tan(90 - A) = cotA
=
[cotA = ]
=
= 1 + tan2A
= sec2A
Let us show that cosec222°cot268° = sin222° + sin268° + cot268°
Given, cosec222°cot268° = sin222° + sin268° + cot268°
⇒ sin222° + sin268° + cot268°
= sin222° + sin2(90 - 22)° + cot268°
= sin222° + cos222° + cot268°
= 1 + cot268°
= cosec268°
If ∠A + ∠B = 90°, let us show that,
Given, ∠ A + ∠ B = 90°
To show = cosP
⇒
=
=
=
=
= sinQ
= sin(90 - p)
= cosP
Hence proved
Let us prove that cot 12°cot38° cot ° cot52° cot 78° cot 60° =
Given, cot12° cot38° cot52° cot78° cot60°
⇒ we know that cot60 =
⇒ cot12° cot38° cot52° cot78° ()
= cot(90 - 78)cot(90 - 52)cot52° cot78° ()
= tan78° tan52° cot52° cot78° ()
= tan78° tan52° ()
= ()
AOB is a diameter of a circle with centre O and C is any point on the circle, joining A.C; B,C; and O, C let us show that
(i) tan∠ABC = cot ∠ACO
(ii) sin2∠BCO + sin2∠ACO = 1
(iii) cosec2∠CAB - 1 = tan2∠ABC
(i) tan∠ABC = cot ∠ACO
⇒ ∠ AOC = 90° = ∠ BOC
⇒ ∠ CAO = 60° and
∠ ACO = 30°
⇒ tan∠ ABC = tan(90 - ∠ ACO)
[tan(90 - θ) = cotθ ]
= cot∠ ACO
(ii) sin2∠BCO + sin2∠ACO = 1
⇒ sin2∠BCO + sin2∠ACO = 1
⇒ sin2∠BCO + sin2∠ACO
⇒ sin2∠BCO + sin2(90 - ∠ BCO)
⇒ sin2∠BCO + cos2∠BCO
= 1
[since, sin2θ + cos2θ = 1]
(iii) cosec2∠CAB - 1 = tan2∠ABC
⇒ cosec2∠CAB - 1
⇒ cosec(90 - ∠CAB) = sec∠CAB
⇒ ∠ CAB = ∠ ABC
⇒ sec2∠CAB - 1 = tan2∠ ABC
⇒ sec2∠ ABC – 1 = tan2∠ ABC
⇒ tan2∠ ABC = tan2∠ ABC
ABCD is a rectangular figure, joining A,C let us prove that
(i) tan∠ACD = cot∠ACB
(ii) tan2∠CAD + 1 =
AC is the diagonal line joining ABCD
(i) tan∠ACD = cot∠ACB
⇒ ∠ACD + ∠ACB = 90
⇒ tan∠ACD
= tan(90 - ∠ACB)
= cot∠ACB
(ii) tan2∠CAD + 1 =
⇒ tan2∠CAD + 1
= cosec2∠ADC
[∠ADC = ∠BAC, from the properties]
= cosec2∠BAC
=
The value of (sin 43° cos47° + cos43° sin47°)
A. 0
B. 1
C. sin4°
D. cos4°
⇒ Option B is correct as it satisfy the value
Given, sin43°cos47° + cos43°sin47°
Need to find the value
⇒ sin43°cos(90 - 43)° + cos43°sin(90 - 43)°
⇒ sin43°sin43° + cos43°cos43°
⇒ sin243° + cos243°
= 1
[Since, sin2θ + cos2θ = 1]
⇒ Option A is incorrect because by solving the equation we get the value as 1
⇒ Option C is incorrect because by solving the equation we get the value as 1
⇒ Option D is incorrect because by solving the equation we get the value as 1
The value of is
A. 0
B. 1
C. 2
D. none of this
Given,
⇒
⇒
⇒
= 1 + 1
= 2
⇒ Option A is incorrect as it does not match the value 2
⇒ Option B is incorrect as it does not match the value 2
⇒ Option C is correct as it match the value 2
⇒ Option D is incorrect as it does not match the value 2
The value of {cos(40° + θ) - sin(50° - θ)} is
A. 2cosθ
B. 7sinθ
C. 0
D. 1
Given, cos(40° + θ) - sin(50° - θ)
[cos(90° - θ) = sinθ ]
⇒ cos(90° - (50° - θ)) - sin(50° - θ)
⇒ sin(50° - θ) - sin(50° - θ)
= 0
⇒ Option C is the correct as the value of cos(40° + θ) - sin(50° - θ) is 0
⇒ Option A is incorrect, since it does not match the value
⇒ Option B is incorrect, since it does not match the value
⇒ Option D is incorrect, since it does not match the value
ABC is triangle. Sin
A. sin
B. cos
C. sinA
D. cosA
In a triangle A+B+C =180°
(B+C)/2 = 90°-A/2
Sin cos (As sin(90°-A) = cos A)
If A + B = 90° and tan A = , value of cot B is
A.
B.
C.
D.
Given, A + B = 90°
And tan A =
⇒ cotB = cot(90 - A)
= tan A
=
∴ Option A is correct, the value of cot B is also
⇒ Option B is incorrect, as it does not match the given value
⇒ Option C is incorrect, as it does not match the given value
⇒ Option D is incorrect, as it does not match the given value
Let us write whether the following statements are true of false:
(i) The value of cos54° and sin36° are equal.
(ii) The simplified value of (sin 12° - cos78°) is 1.
(i) The statement is true
⇒ cos54° = cos(90 - 36)°
= sin36°
[cos(90 - θ) = sinθ]
∴ the value of cos54° and sin36° has same values
(ii) The given statement is False
⇒ sin12° - cos78°
⇒ sin12° - cos(90 - 12)°
⇒ sin12° - sin12°
= 0
Let us fill up the blanks:
(i) The value of (tan 15° x tan 45° x tan 60° tan 75°) is_______.
(ii) The value of (sin 12° x cos 18° x sec 78° cosec 72°) is _______.
(iii) If A and B are complementary to each other, siin A = _______.
(i) The value of tan15° tan45° tan60° tan75° is √3
⇒ we know that tan45° = 1 and tan60° = √3
⇒ tan15°(1)(√3)tan(90 - 15)
⇒ √3 × tan15° cot15°
⇒ √3 × tan15°
= √3 × 1
= √3
(ii) The value of sin12°cos18° × sec78°cosec72° is 1
⇒ sin12°cos18° sec78°cosec72°
⇒ sin12°cos18°sec(90 - 12)°cosec(90 - 18)°
⇒ sin12°cos18°cosec12°sec18°
⇒ sin12°cos18°
= 1
(iii) sinA = cosB
⇒ If A and B are complementary angles then A + B = 90° and A = 90 - B
⇒ sinA = sin(90 - B)
= cosB
If sin 10θ = cos8θ and 10θ is a positive acute angle, let us find the value of tan 9θ.
Given, sin10θ = cos8θ
And 10θ is a positive acute angle
⇒ sin10θ = cos8θ
⇒ cos(90 - 10θ) = cos8θ
⇒ 90 - 10θ = 8θ
⇒ 90 = 18θ
⇒ θ = 5
Hence, the value of θ is 5
If tan 4θ × tan 6θ = 1 and 6θ is a positive acute angle, let us find the value of θ.
Given, 6θ as a positive acute angle
⇒ tan4θ tan6θ = 1
⇒ tan4θ cot(90 - 6θ) = 1
⇒
⇒ cot(90 - 6θ) = cot4θ
⇒ 90 - 6θ = 4θ
⇒ 10θ = 90
⇒ θ = 9
let us find the value of
Given,
⇒
⇒
⇒
⇒
=
= 3
let us find the value of (tan 1° × tan2° × tan 3°………..tan89°)
⇒ tan1° tan2° tan3° ……tan87° tan88° tan89°
⇒ tan1° tan2° tan3° ……tan(90 - 3)° tan(90 - 2)° tan(90 - 1)°
⇒ tan1° tan2° tan3° …..cot3° cot2° cot1°
= 1
If sec 5A = cosec (A + 36°) and 5A is a positive acute angle, let us find the value of A.
Given, sec5A = cosec(A + 36°)
And 5A is positive acute angle
⇒ sec5A = cosec(A + 36°)
⇒ cosec(90° - 5A) = cosec(A + 36°)
[secθ = cosec(90 - θ)]
⇒ 90 - 5A = A + 36
⇒ 90 - 36 = 6A
⇒ 6A = 54
⇒ A = 9
Hence, the value of A is 9