Buy BOOKS at Discounted Price

Trigonometric Ratios

Class 10th Mathematics Rajasthan Board Solution
Exercise 6.1
  1. 2 sin 45° . cos 45° Find the value of the following:
  2. cos 45° cos 60° - sin 45° sin 60° Find the value of the following:…
  3. sin^2 30° + 2 cos^2 45° + 3 tan^2 60° Find the value of the following:…
  4. 3 sin 60° - 4 sin^3 60° Find the value of the following:
  5. 5cos^260^circle + 4sec^230^circle - tan^245^circle /sin^230^circle +…
  6. 4cot^2 45° - sec^2 60° + sin^2 60° + cos^2 90° Find the value of the following:…
  7. 4/cot^230^circle + 1/sin^230^circle - cos^245^circle Find the value of the…
  8. tan^260^circle + 4sin^245^circle + sin^290^circle /3sec^230^circle +…
  9. sin30^circle - sin90^circle + 2cos0^circle /tan30^circle tan60^circle Find the…
  10. 2tan30^circle /1-tan^230^circle Find the value of the following:
  11. cos x = cos 60° cos 30° + sin 60° sin 30° Find the value of x in the…
  12. sin 2x = sin 60° cos 30° - cos 60° - sin 30° Find the value of x in the…
  13. √3 tan 2x = sin 30° + sin 45° cos 45° + 2 sin 90° Find the value of x in the…
  14. cos30^circle + sin60^circle /1+cos60^circle + sin30^circle = root 3/2 Prove…
  15. 4cot^245^circle - sec^260^circle - sin^230^circle = - 1/4 Prove that-…
  16. sin 30° tan^2 60° + 3cos 60° tan 45° = 2sec^2 45° - cosec^2 90° Prove that-…
  17. cosec^245^circle sec^230^circle sin^390^circle cos60^circle = 4/3 Prove that-…
  18. sin60^circle + sin30^circle /sin60^circle - sin30^circle = tan60^circle +…
  19. 2(cos^2 45° + tan^2 60°) - 6(sin^2 45° - tan^2 30°) = 6 Prove that-…
  20. (sec^2 30° + cosec^2 45°) (2cos 60° + sin 90° + tan 45°) = 10 Prove that-…
  21. (1-sin45^circle + sin30^circle) (1+cos45^circle + cos60^circle) = 7/4 Prove…
  22. cos^2 0° - 2 cot^2 30° + 3 cosec^2 90° = 2(sec^2 45° - tan^2 60°) Prove that-…
  23. sin3x = 3sinx - 4 sin^3 x If x = 30°, then prove that
  24. tan2x = 2tanx/1-tan^2x If x = 30°, then prove that
  25. sinx = root 1-cos2x/2 If x = 30°, then prove that
  26. cos3x = 4 cos^3 x - 3cosx If x = 30°, then prove that
  27. If A = 60° and B = 30° then prove that cot (a-b) = cotacotb+1/cotb-cota…
Miscellaneous Exercise 6
  1. The value of tan^2 60° is:A. 3 B. 1/3 C. 1 D. ∞
  2. The value of 2 sin^2 60° cos60° will be:A. 4/3 B. 5/2 C. 3/4 D. 1/3…
  3. If cosectheta = 2/root 3 then the value of θ is:A. pi /4 B. pi /3 C. pi /2 D. pi…
  4. The value of cos^2 45° will be:A. 1/root 2 B. root 3/2 C. 1/2 D. 1/root 3…
  5. If θ = 45° then the value of 1-cos2theta /sin2theta is:A. 0 B. 1 C. 2 D. ∞…
  6. cos60° = 2 cos^2 30° - 1 Prove that:
  7. sin60^circle = 2tan30^circle /1+tan^230^circle Prove that:
  8. cos60^circle = 1-tan^230^circle /1+tan^230^circle Prove that:
  9. (sin45° + cos45°)^2 = 2 Prove that:
  10. 4 tan30° sin45° sin60° sin90° = √2 Prove that:
  11. Find the value of sin^2 60° cot^2 60°.
  12. Find the value of 4cos^3 30° - 3 cos30°.
  13. If cot θ = 1/root 3 then prove that 1-cos^2theta /2-sin^2theta = 3/5…
  14. Prove that 3(tan^2 30° + cot^2 30°) - 8(sin^2 45° + cos^2 30°) = 0…
  15. Prove that 4(sin^4 30° + cos60°) - 3(cos^2 45° - sin^2 90°) = 15/4…
  16. Prove that cos30^circle + sin60^circle /1+cos60^circle + sin30^circle = root…
  17. Prove that 2(cos^2 45° + tan^2 60°) - 6(sin^2 45° - tan^2 30°) = 6…

Exercise 6.1
Question 1.

Find the value of the following:

2 sin 45° . cos 45°


Answer:



∴ 2 sin 45° .cos 45°


=



= 1



Question 2.

Find the value of the following:

cos 45° cos 60° – sin 45° sin 60°


Answer:





∴cos 45° cos 60° - sin 45° sin 60°





Question 3.

Find the value of the following:

sin230° + 2 cos245° + 3 tan260°


Answer:





tan60° = √3



∴ sin230° + 2cos245° + 3tan260°







Question 4.

Find the value of the following:

3 sin 60° – 4 sin360°


Answer:

Let θ = 60°


then,


3 sin 60° – 4 sin360°


= 3sinθ - 4sin3θ


We know that


Sin3θ = 3sinθ - 4sin3θ


⇒ 3 sin 60° – 4 sin360°


= sin(3 × 60° )


= sin 180°


= 0



Question 5.

Find the value of the following:



Answer:





tan45° = 1


∴ tan245° = 1











=



Question 6.

Find the value of the following:

4cot245° – sec260° + sin260° + cos290°


Answer:

cot45° = 1


∴ cot245° = 1


sec60° = 2


∴ sec260° = 4




cos90° = 0


∴ cos290° = 0


∴4cot245° – sec260° + sin260° + cos290°





Question 7.

Find the value of the following:



Answer:

cot30° = √3


∴ cot230° = 3











Question 8.

Find the value of the following:



Answer:

tan 60° = √3


tan260° = 3




sin90° = 1


∴ sin290° = 1










Question 9.

Find the value of the following:



Answer:

sin90° = 1


cos0° = 1




tan60° = √3




=



Question 10.

Find the value of the following:



Answer:




=


=


= √3



Question 11.

Find the value of x in the following:

cos x = cos 60° cos 30° + sin 60° sin 30°


Answer:

We know that,


Cos(A - B) = cosAcosB + sinAsinB


Let A = 60°, B = 30°


Then,


cos 60° cos 30° + sin 60° sin 30°


= cos(A - B)


= cos(60° - 30° )


= cos30°


∴cos x = cos 60° cos 30° + sin 60° sin 30°


⇒ cos x = cos 30°


⇒ x = 30°



Question 12.

Find the value of x in the following:

sin 2x = sin 60° cos 30° – cos 60° – sin 30°


Answer:

We know that,


sin(A - B) = sinAcosB - cosAsinB


LetA = 60°, B = 30°


Then,


sin 60° cos 30° – cos 60°sin 30°


= sin(60° - 30° )


= sin30°


∴sin 2x = sin 60° cos 30° – cos 60°sin 30°


⇒ sin 2x = sin30°


⇒ 2x = 30°



⇒ x = 15°



Question 13.

Find the value of x in the following:

√3 tan 2x = sin 30° + sin 45° cos 45° + 2 sin 90°


Answer:




sin90° = 1


∴sin 30° + sin 45° cos 45° + 2 sin 90°



= 3


tan 2x = sin 30° + sin 45° cos 45° + 2 sin 90°


⇒ √3tan2x = 3



⇒ tan2x = √3


But, tan60° = √3


⇒ tan2x = tan60°


⇒ 2x = 60°



⇒ x = 30°



Question 14.

Prove that-



Answer:





∴LHS =



=



RHS =



∴ LHS = RHS



Hence Proved



Question 15.

Prove that-



Answer:

Cot45° = 1


∴ cot245° = 1


Sec60° = 2


∴ sec260° = 4




∴ LHS = 4cot245° - sec260° - sin230°





RHS =



∴ LHS = RHS



Hence Proved



Question 16.

Prove that-

sin 30° tan260° + 3cos 60° tan 45° = 2sec245° – cosec290°


Answer:





tan45° = 1


sec45° = √2


∴ sec245° = 2


cosec90° = 1


∴ cosec290° = 1


∴ LHS = sin30° tan260° + 3cos60°tan45°


=



RHS


2sec245° – cosec290°


= 2(2) – 1


= 3


RHS = LHS


Henc, Proved!



Question 17.

Prove that-



Answer:

cosec45° = √2


∴ cosec245° = 2




sin90° = 1


∴ sin390° = 1



∴ LHS = cosec245° .sec230° sin390° cos60°




= RHS


∴ LHS = RHS



Hence Proved



Question 18.

Prove that-



Answer:



tan60° = √3


tan45° = 1


LHS =


(sin60° + sin30° )/(sin60° - sin30° )





RHS =


=



∴ LHS = RHS



Hence Proved



Question 19.

Prove that-

2(cos245° + tan260°) – 6(sin245° – tan230°) = 6


Answer:



tan60° = √3


∴ tan260° = 3






∴ LHS =




= 7 - 1


= 6


= RHS


∴ LHS = RHS


∴(cos245° + tan260°) – 6(sin245° – tan230°) = 6


Hence Proved



Question 20.

Prove that-

(sec230° + cosec245°) (2cos 60° + sin 90° + tan 45°) = 10


Answer:



cosec45° = √2


∴ cosec245° = 2



sin90° = 1


tan45° = 1


∴ LHS = (sec230° + cosec245°) (2cos 60° + sin 90° + tan 45°)





= 10 = RHS


∴ LHS = RHS


∴(sec230° + cosec245°) (2cos 60° + sin 90° + tan 45°) = 10


Hence Proved



Question 21.

Prove that-



Answer:





∴LHS =







= RHS


∴ LHS = RHS



Hence, Proved



Question 22.

Prove that-

cos20° – 2 cot230° + 3 cosec290° = 2(sec245° – tan260°)


Answer:

cos0° = 1


∴ cos20° = 1


cot30° = √3


∴ cot230° = 3


cosec90° = 1


∴ cosec290° = 1


sec45° = √2


∴ sec245° = 2


tan60° = √3


tan260° = 3


∴ LHS = cos20° – 2 cot230° + 3 cosec290°


= 1 - 2 × 3 + 3 × 1


= 1 - 6 + 3


= 4 - 6


= - 2


RHS = 2(sec245° – tan260°)


= 2 × (2 - 3)


= 2 × ( -1)


= - 2


- 2 = - 2


∴ LHS = RHS


∴cos20° – 2 cot230° + 3 cosec290° = 2(sec245° – tan260°)


Hence Proved



Question 23.

If x = 30°, then prove that

sin3x = 3sinx – 4 sin3x


Answer:

For x= 30°,


LHS = sin (3×30°)


= sin (90°)


=1


RHS = 3sin30° - 4× (sin30°)3






Since LHS = RHS


sin3x = 3sinx – 4 sin3x


Hence proved.



Question 24.

If x = 30°, then prove that



Answer:

For, x = 30°,


LHS = tan2x = tan(2 × 30°) = tan60° = √3


RHS =







√3 = √3


∴ LHS = RHS


Hence Proved



Question 25.

If x = 30°, then prove that



Answer:

For x = 30°


LHS =



RHS =









∴ LHS = RHS



Hence, Proved



Question 26.

If x = 30°, then prove that

cos3x = 4 cos3x – 3cosx


Answer:

For x = 30°


LHS = cos(3 × 30° ) = cos90° = 0


RHS = 4 cos3x – 3cosx


= 4 cos330°– 3 cos30°




∴4 cos330°– 3 cos30°


=



= 0


Since, 0 = 0


∴ LHS = RHS


∴cos3x = 4 cos3x – 3cosx


Hence Proved



Question 27.

If A = 60° and B = 30° then prove that


Answer:

For A = 60° and B = 30°


LHS = cot(A - B) = cot(60° - 30° ) = cot30° = √3


RHS =






= √3


√3 = √3


∴ LHS = RHS



Hence Proved




Miscellaneous Exercise 6
Question 1.

The value of tan2 60° is:
A. 3

B.

C. 1

D. ∞


Answer:

tan60° = √3


∴ tan260° = (tan60°)2 = (√3)2 = 3


Question 2.

The value of 2 sin260° cos60° will be:
A.

B.

C.

D.


Answer:




∴2 sin260° cos60°




Question 3.

If then the value of θ is:
A.

B.

C.

D.


Answer:




Question 4.

The value of cos245° will be:
A.

B.

C.

D.


Answer:



Question 5.

If θ = 45° then the value of is:
A. 0

B. 1

C. 2

D. ∞


Answer:

For θ = 45°


cos2θ = cos(2 × 45° ) = cos90° = 0


sin2θ = sin(2 × 45° ) = sin90° = 1




= 1


Question 6.

Prove that:

cos60° = 2 cos230° – 1


Answer:




LHS =



RHS =


2cos230° - 1






∴ LHS = RHS


∴cos60° = 2 cos230° – 1


Hence Proved



Question 7.

Prove that:



Answer:




∴ LHS


= sin60°



RHS =







∴ LHS = RHS



∴ Hence Proved



Question 8.

Prove that:



Answer:




∴ LHS =


cos60°



RHS =








∴ LHS = RHS


Hence Proved



Question 9.

Prove that:

(sin45° + cos45°)2 = 2


Answer:

LHS:


(sin45° + cos45°)2




= (√2)2


= 2


= RHS


Hence Proved!



Question 10.

Prove that:

4 tan30° sin45° sin60° sin90° = √2


Answer:




sin90° = 1


LHS =


4 tan30° sin45° sin60° sin90°



= √2


= RHS


Hence Proved!



Question 11.

Find the value of sin260° cot260°.


Answer:





∴sin260° cot260°





Question 12.

Find the value of 4cos330° – 3 cos30°.


Answer:

For θ = 30°,


4cos330° – 3 cos30° = 4cos3θ– 3cosθ


We know that,


cos3θ = 4cos3θ– 3cosθ


∴ 4cos330° – 3 cos30°


= cos(3 × 30° )


= cos90°


= 0



Question 13.

If cot θ = then prove that


Answer:




∴ LHS =













= RHS


∴ LHS = RHS


Hence Proved



Question 14.

Prove that 3(tan230° + cot230°) – 8(sin245° + cos230°) = 0


Answer:



cot30° = √3


∴ cot230° = 3






∴ LHS =


3(tan230° + cot230°) – 8(sin245° + cos230°)




= 10 - 10


= 0


= RHS


∴ LHS = RHS


Hence Proved



Question 15.

Prove that 4(sin430° + cos60°) – 3(cos245° – sin290°) =


Answer:






sin90° = 1


sin290° = 1


∴ LHS = 4(sin430° + cos60°) – 3(cos245° – sin290°)





RHS = LHS


Hence Proved



Question 16.

Prove that


Answer:





∴ LHS =






Question 17.

Prove that 2(cos245° + tan260°) – 6(sin245° – tan230°) = 6


Answer:









∴ LHS = 2(cos245° + tan260°) – 6(sin245° – tan230°)




= 7 – 1


= 6


= RHS


= Hence Proved.