Buy BOOKS at Discounted Price

Trigonometric, Or Circular, Functions

Class 11th Mathematics RS Aggarwal Solution
Exercise 15a
  1. If costheta = { - root {3} }/{2} and θ lies in Quadrant III, find the…
  2. If sintegrate heta = {-1}/{2} and θ lies in Quadrant IV, find the values…
  3. If cosectheta = {5}/{3} and θ lies in Quadrant II, find the values of…
  4. If sectheta = root {2} and θ lies in Quadrant IV, find the values of all…
  5. If sinx = { - 2 root {6} }/{5} and x lies in Quadrant III, find the values…
  6. If cosx = { - root {15} }/{4} frac { pi }/{2} , find the value of sin x.…
  7. If secx = - 2 pi , find the values of all the other five trigonometric…
  8. sin ( { 31 pi }/{3} ) Find the value of
  9. cos ( { 17 pi }/{2} ) Find the value of
  10. tan ( { - 25 pi }/{3} ) Find the value of
  11. cot ( { 13 pi }/{4} ) Find the value of
  12. sec ( { - 25 pi }/{3} ) Find the value of
  13. cosec ( { - 41 pi }/{4} ) Find the value of
  14. sin 405° Find the value of
  15. sec (-14700) Find the value of
  16. tan (-3000) Find the value of
  17. cot (5850) Find the value of
  18. cosec (-7500) Find the value of
  19. cos (-22200) Find the value of
  20. tan^{2} { pi }/{3} + 2cos^{2} frac { pi }/{4} + 3sec^{2} frac { pi }/{6} +…
  21. sin { pi }/{6} cos0+sin frac { pi }/{4} cos frac { pi }/{4} + sin frac {…
  22. 4sin { pi }/{6} sin^{2} frac { pi }/{3} + 3cos frac { pi }/{3} tan frac {…
Exercise 15b
  1. Find the value of(i) cos 8400(ii) sin 8700(iii) tan ( - 1200)(iv) sec ( -…
  2. Find the values of all trigonometric functions of 1350
  3. Prove that(i) sin80^{degree }cos20^{circ} - cos80^{circ}sin20^{circ} = {…
  4. Prove that(i) sin ( 50^{degree } + theta ) cos ( 20^{circ} + theta ) - cos…
  5. Prove that(i) cos (n+2) xcos (n+1) x+sin (n+2) xsin (n+1) x = cosx (ii) cos (…
  6. Prove that { tan ( frac { pi }/{4} + x ) }/{ tan ( frac { pi }/{4} - x ) }…
  7. Prove that(i) sin75^{degree } = { ( root {6} + sqrt{2} ) }/{4} (ii) {…
  8. Prove that(i) cos15^{0} - sin15^{0} = {1}/{ root {2} } (ii) cot105^{degree…
  9. Prove that { cos9^{degree } + sin9^{circ} }/{ cos9^{circ} - sin9^{circ} }…
  10. Prove that
  11. Prove that { cos ( pi + theta ) cos ( - theta ) }/{ cos ( pi - theta )…
  12. Prove that {costheta }/{ sin ( 90^{degree } + theta ) } + frac { sin ( -…
  13. Prove that { sin ( 180^{degree } + theta ) cos ( 90^{circ} + theta ) tan…
  14. If θ and Φ lie in the first quadrant such that sintegrate heta = {8}/{17}…
  15. If x and y are acute such that sinx = {1}/{ root {5} } siny = frac {1}/{…
  16. If x and y are acute angles such that cosx = {13}/{14} cosy = frac {1}/{7}…
  17. If sinx = {12}/{3} siny = frac {4}/{5} , where { pi }/{2} , find the…
  18. If cosx = {3}/{5} andcosy = frac {-24}/{25} , where { 3 pi }/{2} ,…
  19. Prove that(i) cos ( { pi }/{3} + x ) = frac {1}/{2} ( cosx - root {3} sinx…
  20. Prove that(i) 2sin { 5 pi }/{12} sin frac { pi }/{12} = frac {1}/{2} (ii)…
Exercise 15c
  1. sin(1500 + x) + sin (1500 – x) = cos x Prove that
  2. cos x + cos (1200 – x) + cos (1200 + x) = 0 Prove that
  3. sin ( x - { pi }/{6} ) + cos ( x - frac { pi }/{3} ) = root {3} sinx Prove…
  4. tan ( { pi }/{4} + x ) = frac {1+tanx}/{1-tanx} Prove that
  5. tan ( { pi }/{4} - x ) = frac {1-tanx}/{1+tanx} Prove that
  6. Express each of the following as a product.1. sin 10x + sin 6x2. sin 7x – sin…
  7. Express each of the following as an algebraic sum of sines or cosines :(i) 2sin…
  8. {sinx+sin3x}/{cosx-cos3x} = cotx Prove that
  9. {sin7x-sin5x}/{cos7x+cos5x} = tanx Prove that
  10. {sin5x+sin3x}/{cos5x+cos3x} = tan4x Prove that
  11. {cos9x-cos5x}/{cos17x-sin3x} = frac {-sin2x}/{cos10x} Prove that
  12. {sinx+sin3x+sin5x}/{cosx+cos3x+cos5x} = tan3x Prove that
  13. { (sin7x+sin5x) + (sin9x+sin3x) }/{ (cos7x+cos5x) + (cos9x+cos3x) } = tan6x…
  14. cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) Prove that
  15. (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0 Prove that
  16. (cos x – cos y)2 + (sin x – sin y)2 = 4 sin2 ( {x-y}/{2} ) Prove that…
  17. {sin2x-sin2y}/{cos2y-cos2x} = cot (x+y) Prove that
  18. {cosx+cosy}/{cosy-cosx} = cot ( frac {x+y}/{2} ) cot ( frac {x-y}/{2} ) Prove…
  19. {sinx+siny}/{sinx-siny} = tan ( frac {x+y}/{2} ) cot ( frac {x-y}/{2} ) Prove…
  20. sin3x+sin2x-sinx = 4sinxcos {x}/{2} cos frac {3x}/{2} Prove that…
  21. {cos4xsin3x-cos2xsinx}/{sin4xsinx+cos6xcosx} = tan2x Prove that
  22. {cos2xsinx+cos6xsin3x}/{sin2xsinx+sin6xsin3x} = cot5x Prove that
  23. sin10^{degree }sin30^{circ}sin50^{circ}sin70^{circ} = {1}/{16} Prove that…
  24. sin20^{degree }sin40^{circ}sin60^{circ}sin80^{circ} = {3}/{16} Prove that…
  25. cos10^{degree }cos30^{circ}cos50^{circ}cos70^{circ} = {3}/{16} Prove that…
  26. If cosx+cosy = {1}/{3} andsinx+siny = frac {1}/{4} , prove that tan (…
  27. 2cos45^{0}cos15^{0} = { root {3}+1 }/{2} Prove that
  28. 2sin75^{degree }sin15^{circ} = {1}/{2} Prove that
  29. cos15^{degree } - sin15 = {1}/{ root {2} } Prove that
Exercise 15d
  1. If sinx = { root {5} }/{3} 0, find the values ofsin 2x If , find the values…
  2. If sinx = { root {5} }/{3} 0, find the values ofcos 2x If , find the values…
  3. If sinx = { root {5} }/{3} 0, find the values oftan 2x If , find the values…
  4. If cosx = {-3}/{5} pi , find the values ofsin 2x If , find the values of…
  5. If cosx = {-3}/{5} pi , find the values ofcos 2x If , find the values of…
  6. If cosx = {-3}/{5} pi , find the values oftan 2x If , find the values of…
  7. If tanx = {-5}/{12} frac { pi }/{2} , find the values ofsin 2x If , find…
  8. If tanx = {-5}/{12} frac { pi }/{2} , find the values ofcos 2x If , find…
  9. If tanx = {-5}/{12} frac { pi }/{2} , find the values oftan 2x If , find…
  10. If sinx = {1}/{6} , find the value of sin 3x.
  11. If cosx = {-1}/{2} , find the value of cos 3x.
  12. {cos2x}/{cosx-sinx} = cosx+sinx Prove that
  13. {sin2x}/{1+cos2x} = tanx Prove that
  14. {sin2x}/{1-cos2x} = cotx Prove that
  15. {tan2x}/{1+sec2x} = tanx Prove that
  16. sin 2x(tan x + cot x) = 2 Prove that
  17. cosec 2x + cot 2x = cot x Prove that
  18. cos 2x + 2sin2x = 1 Prove that
  19. (sin x – cos x)2 = 1 – sin 2x Prove that
  20. cot x – 2cot 2x = tan x Prove that
  21. (cos^{4}x+sin^{4}x) = {1}/{2} (2-sin^{2}2x) Prove that
  22. {cos^{3}x-sin^{3}x}/{cosx-sinx} = frac {1}/{2} (2+sin2x) Prove that…
  23. {1-cos2x+sinx}/{sin2x+cosx} = tanx Prove that
  24. cosxcos2xcos4xcos8x = {sin16x}/{16sinx} Prove that
  25. 2sin22 { 1^{0} }/{2} cos22 frac { 1^{0} }/{2} = frac {1}/{ root {2} } Prove…
  26. 2cos^{2}15^{degree } - 1 = { root {3} }/{2} Prove that
  27. 8cos^{3}20^{degree } - 6cos20^{circ} = 1 Prove that
  28. 3sin40^{degree } - sin^{3}40^{circ} = { root {3} }/{2} Prove that…
  29. sin^{2}24^{0} - sin^{2}6^{0} = { ( root {5}-1 ) }/{8} Prove that…
  30. sin^{2}72^{0} - cos^{2}30^{degree } = { ( root {5}-1 ) }/{8} Prove that…
  31. Prove that tan 60 tan 420 tan 660 tan 780 = 1
  32. If tantheta = {a}/{b} , prove that asin2theta +bcos2theta = b…
Exercise 15e
  1. If sinx = { root {5} }/{3} frac { pi }/{2} , find the values of(i) sin…
  2. If cosx = {-3}/{5} frac { pi }/{2} , find the values of(i) sin {x}/{2}…
  3. If sinx = {-1}/{2} x lies in Quadrant IV, find the values of(i) sin…
  4. If cos {x}/{2} = frac {12}/{13} x lies in Quadrant I, find the values of(i)…
  5. If sinx = {3}/{5} 0, find the value of tan {x}/{2} .
  6. Prove that cot {x}/{2} - tan frac {x}/{2} = 2cotx
  7. Prove that tan ( { pi }/{4} + frac {x}/{2} ) = tanx+secx
  8. Prove that root { {1+sinx}/{1-sinx} } = tan ( frac { pi }/{4} + frac…
  9. Prove that tan ( { pi }/{4} + frac {x}/{2} ) + tan ( frac { pi }/{4} - frac…
  10. Prove that {sinx}/{1+cosx} = tan frac {x}/{2}

Exercise 15a
Question 1.

If and θ lies in Quadrant III, find the value of all the other five trigonometric functions.


Answer:

Given:


Since, θ is in IIIrd Quadrant. So, sin and cos will be negative but tan will be positive.


We know that,


cos2 θ + sin2 θ = 1


Putting the values, we get


[given]








Since, θ in IIIrd quadrant and sinθ is negative in IIIrd quadrant



Now,



Putting the values, we get





Now,



Putting the values, we get



= -2


Now,



Putting the values, we get




Now,



Putting the values, we get



=√3


Hence, the values of other trigonometric Functions are:




Question 2.

If and θ lies in Quadrant IV, find the values of all the other five trigonometric functions.


Answer:

Given:


Since, θ is in IVth Quadrant. So, sin and tan will be negative but cos will be positive.


We know that,


sin2 θ + cos2 θ = 1


Putting the values, we get


[given]








Since, θ in IVth quadrant and cosθ is positive in IVth quadrant



Now,



Putting the values, we get





Now,



Putting the values, we get



= -2


Now,



Putting the values, we get




Now,



Putting the values, we get



=-√3


Hence, the values of other trigonometric Functions are:




Question 3.

If and θ lies in Quadrant II, find the values of all the other five trigonometric functions.


Answer:

Given:


Since, θ is in IInd Quadrant. So, cos and tan will be negative but sin will be positive.


Now, we know that



Putting the values, we get



…(i)


We know that,


sin2 θ + cos2 θ = 1


Putting the values, we get


[from (i)]








Since, θ in IInd quadrant and cosθ is negative in IInd quadrant



Now,



Putting the values, we get





Now,



Putting the values, we get




Now,



Putting the values, we get




Hence, the values of other trigonometric Functions are:




Question 4.

If and θ lies in Quadrant IV, find the values of all the other five trigonometric functions.


Answer:

Given: sec θ = √2


Since, θ is in IVth Quadrant. So, sin and tan will be negative but cos will be positive.


Now, we know that



Putting the values, we get


…(i)


We know that,


cos2 θ + sin2 θ = 1


Putting the values, we get


[given]








Since, θ in IVth quadrant and sinθ is negative in IVth quadrant



Now,



Putting the values, we get




=-1


Now,



Putting the values, we get



= -√2


Now,



Putting the values, we get



= -1


Hence, the values of other trigonometric Functions are:




Question 5.

If and x lies in Quadrant III, find the values of cos x and cot x.


Answer:

Given:

To find: cos x and cot x



Since, x is in IIIrd Quadrant. So, sin and cos will be negative but tan will be positive.


We know that,


sin2 x + cos2 x = 1


Putting the values, we get


[given]








Since, x in IIIrd quadrant and cos x is negative in IIIrd quadrant



Now,



Putting the values, we get




= 2√6


Now,



Putting the values, we get



Hence, the values of other trigonometric Functions are:




Question 6.

If , find the value of sin x.


Answer:

Given:

To find: value of sinx



Given that:


So, x lies in IInd quadrant and sin will be positive.


We know that,


cos2 θ + sin2 θ = 1


Putting the values, we get


[given]








Since, x in IInd quadrant and sinθ is positive in IInd quadrant




Question 7.

If , find the values of all the other five trigonometric functions.


Answer:

Given: sec x = -2


Given that:


So, x lies in IIIrd Quadrant. So, sin and cos will be negative but tan will be positive.


Now, we know that



Putting the values, we get


…(i)


We know that,


cos2 x + sin2 x = 1


Putting the values, we get


[given]








Since, x in IIIrd quadrant and sinx is negative in IIIrd quadrant



Now,



Putting the values, we get




=√3


Now,



Putting the values, we get




Now,



Putting the values, we get



Hence, the values of other trigonometric Functions are:




Question 8.

Find the value of




Answer:


To find: Value of




Value of sin x repeats after an interval of 2π, hence ignoring 5 × (2π)




= sin 60°




Question 9.

Find the value of




Answer:


To find: Value of




Value of cos x repeats after an interval of 2π, hence ignoring 4 × (2π)




= cos 90°


= 0 [∵ cos 90° = 1]



Question 10.

Find the value of




Answer:


To find: Value of


We know that,


tan(-θ) = - tan θ





Value of tan x repeats after an interval of 2π, hence ignoring 4 × (2π)




= - tan 60°


= -√3


[∵ tan 60° = √3]



Question 11.

Find the value of




Answer:

To find: Value of

We have,



Putting π = 180°



= cot (13 × 45°)


= cot (585°)


= cot [90° × 6 + 45°]


= cot 45°


[Clearly, 585° is in IIIrd Quadrant and the multiple of 90° is even]


= 1 [∵ cot 45° = 1]



Question 12.

Find the value of




Answer:

To find: Value of

We have,



[∵ sec(-θ) = sec θ]


Putting π = 180°



= sec[25 × 60°]


= sec[1500°]


= sec [90° × 16 + 60°]


Clearly, 1500° is in Ist Quadrant and the multiple of 90° is even


= sec 60°


= 2



Question 13.

Find the value of




Answer:

To find: Value of

We have,



[∵ cosec(-θ) = -cosec θ]


Putting π = 180°



= -cosec[41 × 45°]


= -cosec[1845°]


= -cosec [90° × 20 + 45°]


Clearly, 1845° is in Ist Quadrant and the multiple of 90° is even


= -cosec 45°


= -√2



Question 14.

Find the value of

sin 405°


Answer:

To find: Value of sin 405°

We have,


sin 405° = sin [90° × 4 + 45°]


= sin 45°


[Clearly, 405° is in Ist Quadrant and the multiple of 90° is even]




Question 15.

Find the value of

sec (-14700)


Answer:

To find: Value of sec (-1470°)

We have,


sec (-1470°) = sec (1470°)


[∵ sec(-θ) = sec θ]


= sec [90° × 16 + 30°]


Clearly, 1470° is in Ist Quadrant and the multiple of 90° is even


= sec 30°




Question 16.

Find the value of

tan (-3000)


Answer:

To find: Value of tan (-300°)

We have,


tan (-300°) = - tan (300°)


[∵ tan(-θ) = -tan θ]


= - tan [90° × 3 + 30°]


Clearly, 300° is in IVth Quadrant and the multiple of 90° is odd


= - cot 30°


= -√3



Question 17.

Find the value of

cot (5850)


Answer:

To find: Value of

We have,


cot (585°) = cot [90° × 6 + 45°]


= cot 45°


[Clearly, 585° is in IIIrd Quadrant and the multiple of 90° is even]


= 1 [∵ cot 45° = 1]



Question 18.

Find the value of

cosec (-7500)


Answer:

To find: Value of cosec (-750°)

We have,


cosec (-750°) = - cosec(750°)


[∵ cosec(-θ) = -cosec θ]


= - cosec [90° × 8 + 30°]


Clearly, 405° is in Ist Quadrant and the multiple of 90° is even


= - cosec 30°


= -2 [∵ cosec 30° = 2]



Question 19.

Find the value of

cos (-22200)


Answer:

To find: Value of cos 2220°

We have,


cos (-2220°) = cos 2220°


[∵ cos(-θ) = cos θ]


= cos [2160 + 60°]


= cos [360° × 6 + 60°]


= cos 60°


[Clearly, 2220° is in Ist Quadrant and the multiple of 360° is even]




Question 20.

Prove that




Answer:

To prove:

Taking LHS,



Putting π = 180°



= tan2 60° + 2 cos2 45° + 3 sec2 30° + 4 cos2 90°


Now, we know that,






Putting the values, we get




= 3 + 1 + 4


= 8


= RHS


∴ LHS = RHS


Hence Proved



Question 21.

Prove that




Answer:

To prove:

Taking LHS,



Putting π = 180°



= sin 30° cos 0° + sin 45° cos 45° + sin 60° cos 30°


Now, we know that,








Putting the values, we get






= RHS


∴ LHS = RHS


Hence Proved



Question 22.

Prove that




Answer:

To prove:

Taking LHS,



Putting π = 180°



= 4 sin 30° sin2 60° + 3 cos 60° tan 45° + cosec2 90°


Now, we know that,





tan 45° = 1


cosec 90° = 1


Putting the values, we get






= 4


= RHS


∴ LHS = RHS


Hence Proved




Exercise 15b
Question 1.

Find the value of

(i) cos 8400

(ii) sin 8700

(iii) tan ( - 1200)

(iv) sec ( - 4200)

(v) cosec ( - 6900)

(vi) tan (2250)

(vii) cot ( - 3150)

(viii) sin ( - 12300)

(ix) cos (4950)


Answer:

(i)

Cos840° = Cos(2.360° + 120°) …………(using Cos(2ϖ + x) = Cosx)


= Cos(120°)


= Cos(180° - 60°)


= - Cos60° ……………(using Cos(ϖ - x) = - Cosx)



(ii) sin870° = sin(2.360° + 150°) ………….(using sin(2ϖ + x) = sinx)


= sin150°


= sin(180° - 30°) ………(using sin(ϖ - x) = sinx)


= sin30°



(iii)tan( - 120°) = - tan12 …….(tan( - x) = tanx)


= - tan(180° - 60°) ……. (in II quadrant tanx is negative)


= - ( - tan60°)


= tan60°



(iv)


= ………..(using cos( - x) = - cosx)


= ………...(using cos(2ϖ + x) = cosx)


=


(v)


……..(IV quadrant sinx is negative)



(vi)tan225° = tan(180° + 45°) …………(in III quadrant tanx is positive)



(vii)


.….(tan( - x) = - tanx)


…..(in IV quadrant tanx is negative)


(viii)sin( - 1230°) = sin1230° ………….(using sin( - x) = sinx)


= sin(3.360° + 150°)


= sin150°


= sin(180° - 30°) ………….(using sin(180° - x) = sinx)


= sin30°



(ix)cos495° = cos(360° + 135°) …………(using cos(360° + x) = cosx)


= cos135°


= cos(180° - 45°) ………….(using cos(180° - x) = - cosx)


= - cos45°




Question 2.

Find the values of all trigonometric functions of 1350


Answer:

Sin135° = sin(180° - 45°) …….....(using sin(180° - x) = sinx)


Cos135° = cos(180° - 45°) .….…..(using cos(180° - x) = - cosx)



Tan135° =


Cosec135° =


Sec135° =


Cot135° =



Question 3.

Prove that

(i)

(ii)

(iii)

(iv)

(v)


Answer:

(i)sin80°cos20° - cos80°sin20° = sin(80° - 20°)

(using sin(A - B) = sinAcosB - cosAsinB)


= sin60°



(ii)cos45°cos15° - sin45°sin15° = cos(45° + 15°)


(using cos(A + B) = cosAcosB - sinAsinB)


= cos60°



(iii)cos75°cos15° + sin75°sin15° = cos(75° - 15°)


(using cos(A - B) = cosAcosB + sinAsinB)


= cos60°



(iv)sin40°cos20° + cos40°sin20° = sin(40° + 20°)


(using sin(A + B) = sinAcosB + cosAsinB)


= sin60°



(v)cos130°cos40° + sin130°sin40° = cos(130° - 40°)


(using cos(A - B) = cosAcosB + sinAsinB)


= cos90°


= 0



Question 4.

Prove that

(i)

(ii)


Answer:

(i)sin(50° + θ)cos(20° + θ) - cos(50° + θ)sin(20° + θ)

= sin(50° + θ - (20° + θ))(using sin(A - B) = sinAcosB - cosAsinB)


= sin(50° + θ - 20° - θ)


= sin30°



(ii)cos(70° + θ)cos(10° + θ) + sin(70° + θ)sin(10° + θ)


= cos(70° + θ - (10° + θ))(using cos(A - B) = cosAcosB + sinAsinB)


= cos(70° + θ - 10° - θ)


= cos60°




Question 5.

Prove that

(i)

(ii)


Answer:

(i)cos(n + 2)x.cos(n + 1)x + sin(n + 2)x.sin(n + 1)x

= sin((n + 2)x + (n + 1)x)(using cos(A - B) = cosAcosB + sinAsinB)


= cos(nx + 2x - (nx + x))


= cos(nx + 2x - nx - x)


= cosx


(ii)


(using cos(A + B) = cosAcosB - sinAsinB)



)


= sin(x + y)



Question 6.

Prove that


Answer:




Hence, Proved.



Question 7.

Prove that

(i)

(ii)

(iii) tan 150 + cot 150 = 4


Answer:

(i)sin75° = sin(90° - 15°) .…….(using sin(A - B) = sinAcosB - cosAsinB)

= sin90°cos15° - cos90°sin15°


= 1.cos15° - 0.sin15°


= cos15°


Cos15° = cos(45° - 30°) …………(using cos(A - B) = cosAcosB + sinAsinB)


= cos45°.cos30° + sin45°.sin30°





(ii)(using sin(180° - x) = sinx)


(using cos(180° - x) = - cosx)


=





(iii)tan15° + cot15° =


First, we will calculate tan15°,


………………….(1)






Putting in eq(1),






Question 8.

Prove that

(i)

(ii)

(iii)


Answer:

(i) cos150

Sin150


Cos150 - sin150





(ii)cot105° - tan105° = cot(180° - 75°) - tan(180° - 75°)


(II quadrant tanx is negative and cotx as well)


= - cot75° - ( - tan75°)


= tan75° - cot75°


Tan75° =


(using sin(90° - x) = - cosx and cos(90° - x) = sinx)



Cot75° =


Cot105° - tan105° =



(iii)


(II quadrant tanx negative)


- tan45° = - 1



Question 9.

Prove that


Answer:

First we will take out cos9°common from both numerator and denominator,

°




Question 10.

Prove that


Answer:

First we will take out cos8° common from both numerator and denominator,




Question 11.

Prove that


Answer:






Question 12.

Prove that




Answer:

Using sin(90° + θ) = cosθ and sin( - θ) = sinθ,tan(90° + θ) = - cotθ

Sin(180° + θ) = - sinθ(III quadrant sinx is negative)





Question 13.

Prove that




Answer:

Using cos(90° + θ) = - sinθ(I quadrant cosx is positive

cosec( - θ) = - cosecθ


tan(270° - θ) = tan(180° + 90° - θ) = tan(90° - θ) = cotθ


(III quadrant tanx is positive)


Similarily sin(270° + θ) = - cosθ (IV quadrant sinx is negative


cot(360° - θ) = cotθ(IV quadrant cotx is negative)






Question 14.

If θ and Φ lie in the first quadrant such that , find the values of

(i) sin (θ - Φ )

(ii) cos (θ - Φ)

(iii) tan (θ - Φ)


Answer:




(i)sin(θ - Φ) = sinθcosΦ + cosθsinΦ


=


(ii) cos(θ - Φ) = cosθ.cosΦ + sinθ.sinΦ



(iii)We will first find out the Values of tanθ and tanΦ,



tan(θ - Φ) =



Question 15.

If x and y are acute such that , prove that


Answer:

,

Now we will calculate value of cos x and cosy




Sin(x + y) = sinx.cosy + cosx.siny






Question 16.

If x and y are acute angles such that , prove that .


Answer:


Now we will calculate value of sinx and siny




Hence,


Cos(x - y) = cosx.cosy + sinx.siny






Question 17.

If, where

, find the values of

(i) sin (x + y)

(ii) cos (x + y)

(iii) tan (x – y)


Answer:

,

Here we will find values of cosx and cosy




(i) sin(x + y) = sinx.cosy + cosx.siny



(ii)cos(x + y) = cosx.cosy + sinx.siny



(iii)Here first we will calculate value of tanx and tany,





Question 18.

If , where , find the values of

(i) sin (x + y)

(ii) cos (x – y)

(iii) tan (x + y)


Answer:


We will first find out value of sinx and siny,




(i)sin(x + y) = sinx.cosy + cosx.siny




(ii)cos(x - y) = cosx.cosy + sinx.siny


=


(iii)Here first we will calculate value of tanx and tany,





Question 19.

Prove that

(i)

(ii)

(iii)

(iv)


Answer:

(i)


(ii)




(iii)



(iv)







Question 20.

Prove that

(i)

(ii)

(iii)


Answer:

(i)

………[Using –2sinx.siny = cos(x + y)–cos (x–y)]




(ii)


………..[using 2cosx.cosy = cos(x + y) + cos(x–y)]




(iii)


...[Using2sinx.cosy = sin(x + y) + sin(x–y)]






Exercise 15c
Question 1.

Prove that

sin(1500 + x) + sin (1500 – x) = cos x


Answer:

In this question the following formula will be used:


Sin( A +B)= sinA cos B + cosA sinB


Sin( A - B)= sinA cos B - cosA sinB


= sin150 cosx + cos 150 sinx + sin150 cosx – cos150 sinx


=2sin150cosx


=2sin(90 + 60)cosx


=2cos60cosx


=2cosx


=cosx



Question 2.

Prove that

cos x + cos (1200 – x) + cos (1200 + x) = 0


Answer:

In this question the following formulas will be used:


cos (A + B) = cosAcosB – sinAsinB


cos (A - B) = cosAcosB+ sinAsinB


= cos x + cos 1200 cosx – sin120sinx + cos 1200cosx+sin120sinx


= cosx + 2cos120 cosx


=cosx + 2cos (90 + 30) cosx


= cosx + 2 (-sin30) cosx


=cosx - 2 cosx


=


=0.



Question 3.

Prove that




Answer:

In this question the following formulas will be used:


sin (A - B) = sinA cos B - cosA sinB


cos (A - B) = cosAcosB+ sinAsinB


=


=


=


=


=.



Question 4.

Prove that




Answer:

In this question the following formulas will be used:



=


=



Question 5.

Prove that




Answer:

In this question the following formulas will be used:



=


=



Question 6.

Express each of the following as a product.

1. sin 10x + sin 6x

2. sin 7x – sin 3x

3. cos 7x + cos 5x

4. cos2x – cos 4x


Answer:

1. = 2


=2


=2


Using,


sin( A +B)= sinA cos B + cosA sinB


= 2


= 2


= 2cos5x sin2x


Using,


sin( A - B)= sinA cos B - cosA sinB


= 2


= 2


= 2


Using,


cos (A + B) = cosAcosB – sinAsinB


4.= -2


= -2


= 2sin3x sinx


Using,


cos (A - B) = cosAcosB+ sinAsinB



Question 7.

Express each of the following as an algebraic sum of sines or cosines :

(i) 2sin 6x cos 4x

(ii) 2cos 5x din 3x

(iii) 2cos 7x cos 3x

(iv) 2sin 8x sin 2x


Answer:

i) 2sin 6x cos 4x = sin (6x+4x) + sin (6x-4x)


= sin 10x + sin 2x


Using,


2sinAcosB = sin (A+ B) + sin (A - B)


ii) 2cos 5x sin3x = sin (5x + 3x) – sin (5x – 3x)


= sin8x – sin2x


Using,


2cosAsinB = sin(A + B) – sin (A - B)


iii) 2cos7xcos3x = cos (7x+3x) + cos (7x – 3x)


=cos10x + cos 4x


Using,


2cosAcosB = cos (A+ B) + cos (A - B)


iv)2sin8xsin2x = cos (8x - 2x) – cos (8x + 2x)


= cos6x – cos10x


Using,


2sinAsinB = cos (A - B) – cos (A+ B)



Question 8.

Prove that




Answer:


=


=


=


= cotx


Using the formula,


sinA + sinB = 2sin cos


cosA - cosB = -2sinsin



Question 9.

Prove that




Answer:


=


=


=


= tanx


Using the formula,


sinA - sinB = 2cos sin


cosA + cosB = 2coscos



Question 10.

Prove that




Answer:


=


=


= tan4x


Using the formula,


sinA + sinB = 2sin cos


cosA + cosB = 2coscos



Question 11.

Prove that




Answer:

=


=


=


=


Using the formula,


cosA - cosB = -2sinsin


sinA - sinB = 2cos sin



Question 12.

Prove that




Answer:

=


=


=


=


=


= tan3x.


Using the formula,


sinA + sinB = 2sin cos


cosA + cosB = 2coscos



Question 13.

Prove that




Answer:

=


=


=


=


=


=


Using the formula,


sinA + sinB = 2sin cos


cosA + cosB = 2coscos



Question 14.

Prove that

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)


Answer:

L.H.S


cot 4x (sin 5x + sin3x)


= cot 4x (2)


= cot 4x (2 sin4x cosx)


= (2 sin4x cosx)


= 2cos4xcosx


R.H.S


cot x (sin 5x - sin3x)


= cot x (2)


= cot x (2 cos4x sinx)


= (2 cos4x sinx)


= 2cos4xcosx


L.H.S=R.H.S


Hence, proved.


Using the formula,


sinA + sinB = 2sin cos


sinA - sinB = 2cos sin



Question 15.

Prove that

(sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0


Answer:

= (sin 3x + sin x) sin x + (cos 3x – cos x) cos x


= (2sincos) sin x + (-2sin sin) cosx


= (2sin2x cosx) sinx-(2sin2x sinx) cosx


= 0.


Using the formula,


sinA + sinB = 2sin cos


cosA - cosB = -2sinsin



Question 16.

Prove that

(cos x – cos y)2 + (sin x – sin y)2 = 4 sin2


Answer:

= (cos x – cos y)2 + (sin x – sin y)2


=(-2sinsin) 2 +(2cossin) 2


=4 sin2(sin2+cos2)


=4 sin2


Using the formula,


cosA - cosB = -2sinsin


sinA - sinB = 2cos sin



Question 17.

Prove that




Answer:

=


=


=


=


=)


Using the formula,


cosA - cosB = -2sinsin


sinA - sinB = 2cos sin



Question 18.

Prove that




Answer:

=


=


=


=


=


Using the formula,


cosA - cosB = -2sinsin


cosA + cosB = 2coscos



Question 19.

Prove that




Answer:

=


=


=


Using the formula,


sinA + sinB = 2sin cos


sinA - sinB = 2cos sin



Question 20.

Prove that




Answer:

=Sin3x+sin2x-sinx


= (sin3x- sinx)+sin2x


= ( 2cossin) + sin2x


= 2cos2xsinx +sin2x


= 2cos2xsinx + 2sinxcosx


= 2sinx (cos2x + cosx )


= 2sinx (2cos cos )


= 4sinxcos cos


Using the formula,


sinA - sinB = 2cos sin


cosA + cosB = 2coscos



Question 21.

Prove that




Answer:

=


=


=


=


=


=


=


=


Using the formulas,


2cosAsinB = sin (A + B) – sin (A - B)


2cosAcosB = cos (A + B) + cos (A - B)


2sinAsinB = cos (A - B) – cos (A + B)



Question 22.

Prove that




Answer:

=


=


=


=


=


=


=


=


=


Using the formulas,


2cosAsinB = sin (A + B) – sin (A - B)


2sinAsinB = cos (A - B) – cos (A + B)



Question 23.

Prove that




Answer:

L.H.S


=


=


={}


={}


={}}


={}


={}


={}


={}


={}


={}


=


=R.H.S



Question 24.

Prove that




Answer:

L.H.S


=


=


={}


={}


={}}


={}


={}


={}


={}


={}


={}


=


=R.H.S



Question 25.

Prove that




Answer:

L.H.S


=


=


={}


={}


={}}


={}


={


={}


={}


={}


={}


=



Question 26.

If , prove that


Answer:

cosx+cosy = --------- i


sinx+siny = ----------ii


dividing ii by I we get,


=


=


=



Using the formula,


sinA + sinB = 2sin cos


cosA + cosB = 2coscos



Question 27.

Prove that




Answer:

L.H.S


= 2


=2


=2)


=


=


=


=



Question 28.

Prove that




Answer:

L.H.S


= 2


=2


=)


=-


=


=



Question 29.

Prove that




Answer:

L.H.S




) - )








Exercise 15d
Question 1.

If , find the values of

sin 2x


Answer:

Given:

To find: sin2x


We know that,


sin2x = 2 sinx cosx …(i)


Here, we don’t have the value of cos x. So, firstly we have to find the value of cosx


We know that,



sin2x + cos2x = 1


Putting the values, we get











Putting the value of sinx and cosx in eq. (i), we get


sin2x = 2sinx cosx





Question 2.

If , find the values of

cos 2x


Answer:

Given:

To find: cos2x


We know that,


cos 2x = 1 – 2sin2x


Putting the value, we get








Question 3.

If , find the values of

tan 2x


Answer:

To find: tan2x

From part (i) and (ii), we have



and


We know that,



Replacing x by 2x, we get



Putting the values of sin 2x and cos 2x, we get




∴ tan 2x = -4√5



Question 4.

If , find the values of

sin 2x


Answer:

Given:

To find: sin2x


We know that,


sin2x = 2 sinx cosx …(i)


Here, we don’t have the value of sin x. So, firstly we have to find the value of sinx


We know that,



cos2x + sin2x = 1


Putting the values, we get











Putting the value of sinx and cosx in eq. (i), we get


sin2x = 2sinx cosx





Question 5.

If , find the values of

cos 2x


Answer:

Given:

To find: cos2x


We know that,


cos 2x = 2cos2x – 1


Putting the value, we get








Question 6.

If , find the values of

tan 2x


Answer:

To find: tan2x

From part (i) and (ii), we have



and


We know that,



Replacing x by 2x, we get



Putting the values of sin 2x and cos 2x, we get






Question 7.

If , find the values of

sin 2x


Answer:

Given:

To find: sin 2x


We know that,



Putting the values, we get









Question 8.

If , find the values of

cos 2x


Answer:

Given:

To find: cos 2x


We know that,



Putting the values, we get








Question 9.

If , find the values of

tan 2x


Answer:

Given:

To find: tan 2x


We know that,



Putting the values, we get









Question 10.

If , find the value of sin 3x.


Answer:

Given:

To find: sin 3x


We know that,


sin 3x = 3 sinx – sin3x


Putting the values, we get








Question 11.

If , find the value of cos 3x.


Answer:

Given:

To find: cos 3x


We know that,


cos 3x = 4cos3x – 3 cosx


Putting the values, we get







cos 3x = 1



Question 12.

Prove that




Answer:

To Prove:

Taking LHS,



[∵ cos 2x = cos2x – sin2x]


Using, (a2 – b2) = (a – b)(a + b)



= cos x + sin x


= RHS


∴ LHS = RHS


Hence Proved



Question 13.

Prove that




Answer:

To Prove:

Taking LHS,



[∵ sin 2x = 2 sinx cosx]


[∵ 1 + cos 2x = 2 cos2x]



= tan x


= RHS


∴ LHS = RHS


Hence Proved



Question 14.

Prove that




Answer:

To Prove:

Taking LHS,



[∵ sin 2x = 2 sinx cosx]


[∵ 1 – cos 2x = 2 sin2x]



= cot x


= RHS


∴ LHS = RHS


Hence Proved



Question 15.

Prove that




Answer:

To Prove:

Taking LHS,





[∵ sin 2x = 2 sinx cosx]


[∵ 1 + cos 2x = 2 cos2x]



= tan x


= RHS


∴ LHS = RHS


Hence Proved



Question 16.

Prove that

sin 2x(tan x + cot x) = 2


Answer:

To Prove: sin 2x(tan x + cot x) = 2

Taking LHS,


sin 2x(tan x + cot x)


We know that,






We know that,


sin 2x = 2 sinx cosx



= 2(sin2x + cos2x)


= 2 × 1 [∵ cos2 θ + sin2 θ = 1]


= 2


= RHS


∴ LHS = RHS


Hence Proved



Question 17.

Prove that

cosec 2x + cot 2x = cot x


Answer:

To Prove: cosec 2x + cot 2x = cot x

Taking LHS,


= cosec 2x + cot 2x …(i)


We know that,



Replacing x by 2x, we get



So, eq. (i) becomes




[∵ 1 + cos 2x = 2 cos2x]


[∵ sin 2x = 2 sinx cosx]



= cot x


= RHS


Hence Proved



Question 18.

Prove that

cos 2x + 2sin2x = 1


Answer:

To Prove: cos 2x + 2sin2x = 1

Taking LHS,


= cos 2x + 2sin2x


= (2cos2x – 1) + 2sin2x [∵ 1 + cos 2x = 2 cos2x]


= 2(cos2x + sin2x) – 1


= 2(1) – 1 [∵ cos2 θ + sin2 θ = 1]


= 2 – 1


= 1


= RHS


∴ LHS = RHS


Hence Proved



Question 19.

Prove that

(sin x – cos x)2 = 1 – sin 2x


Answer:

To Prove: (sin x – cos x)2 = 1 – sin 2x

Taking LHS,


= (sin x – cos x)2


Using,


(a – b)2 = (a2 + b2 – 2ab)


= sin2x + cos2x – 2sinx cosx


= (sin2x + cos2x) – 2sinx cosx


= 1 – 2sinx cosx [∵ cos2 θ + sin2 θ = 1]


= 1 – sin2x [∵ sin 2x = 2 sinx cosx]


= RHS


∴ LHS = RHS


Hence Proved



Question 20.

Prove that

cot x – 2cot 2x = tan x


Answer:

To Prove: cot x – 2cot 2x = tan x

Taking LHS,


= cot x – 2cot 2x …(i)


We know that,



Replacing x by 2x, we get



So, eq. (i) becomes



[∵ sin 2x = 2 sinx cosx]





[∵ 1 + cos 2x = 2 cos2x]





[∵ cos2 θ + sin2 θ = 1]




= tan x


= RHS


∴ LHS = RHS


Hence Proved



Question 21.

Prove that




Answer:

To Prove:

Taking LHS,


= cos4x + sin4x


Adding and subtracting 2sin2x cos2x, we get


= cos4x + sin4x + 2sin2x cos2x – 2sin2x cos2x


We know that,


a2 + b2 + 2ab = (a + b)2


= (cos2x + sin2x) – 2sin2x cos2x


= (1) – 2sin2x cos2x [∵ cos2 θ + sin2 θ = 1]


= 1 – 2sin2x cos2x


Multiply and divide by 2, we get





[∵ sin 2x = 2 sinx cosx]



= RHS


∴ LHS = RHS


Hence Proved



Question 22.

Prove that




Answer:

To Prove:

Taking LHS,


…(i)


We know that,


a3 – b3 = (a – b)(a2 + ab + b2)


So, cos3x – sin3x = (cosx – sinx)(cos2x + cosx sinx + sin2x)


So, eq. (i) becomes



= cos2x + cosx sinx + sin2x


= (cos2x + sin2x) + cosx sinx


= (1) + cosx sinx [∵ cos2 θ + sin2 θ = 1]


= 1 + cosx sinx


Multiply and Divide by 2, we get




[∵ sin 2x = 2 sinx cosx]


= RHS


∴ LHS = RHS


Hence Proved



Question 23.

Prove that




Answer:

To prove:

Taking LHS,




We know that,


1 – cos 2x = 2 sin2x & sin 2x = 2 sinx cosx



Taking sinx common from the numerator and cosx from the denominator




= tan x


= RHS


∴ LHS = RHS


Hence Proved



Question 24.

Prove that




Answer:

To Prove:

Taking LHS,


= cosx cos2x cos4x cos8x


Multiply and divide by 2sinx, we get




[∵ sin 2x = 2 sinx cosx]


Multiply and divide by 2, we get



We know that,


sin 2x = 2 sinx cosx


Replacing x by 2x, we get


sin 2(2x) = 2 sin(2x) cos(2x)


or sin 4x = 2 sin 2x cos 2x



Multiply and divide by 2, we get



We know that,


sin 2x = 2 sinx cosx


Replacing x by 4x, we get


sin 2(4x) = 2 sin(4x) cos(4x)


or sin 8x = 2 sin 4x cos 4x



Multiply and divide by 2, we get



We know that,


sin 2x = 2 sinx cosx


Replacing x by 8x, we get


sin 2(8x) = 2 sin(8x) cos(8x)


or sin 16x = 2 sin 8x cos 8x



= RHS


∴ LHS = RHS


Hence Proved



Question 25.

Prove that




Answer:

To Prove:

Taking LHS,


…(i)


We know that,


2sinx cosx = sin 2x


Here,


So, eq. (i) become



= sin 45°



= RHS


∴ LHS = RHS


Hence Proved




Question 26.

Prove that




Answer:

To Prove:

Taking LHS,


= 2 cos2 15° - 1 …(i)


We know that,


1 + cos 2x = 2 cos2x


Here, x = 15°


So, eq. (i) become


= [1 + cos 2(15°)] – 1


= 1 + cos 30° - 1


= cos 30°



= RHS


∴ LHS = RHS


Hence Proved



Question 27.

Prove that




Answer:

To Prove: 8 cos3 20° - 6 cos 20° = 1

Taking LHS,


= 8 cos3 20° - 6 cos 20°


Taking 2 common, we get


= 2(4 cos3 20° - 3 cos 20°) …(i)


We know that,


cos 3x = 4cos3x – 3 cosx


Here, x = 20°


So, eq. (i) becomes


= 2[cos 3(20°)]


= 2[cos 60°]



= 1


= RHS


∴ LHS = RHS


Hence Proved



Question 28.

Prove that




Answer:

To prove:

Taking LHS,


= 3 sin 40° - sin3 40° …(i)


We know that,


sin 3x = 3 sinx – sin3x


Here, x = 40°


So, eq. (i) becomes


= sin 3(40°)


= sin 120°


= sin (180° - 60°)


= sin 60° [∵sin (180° - θ) = sin θ]



= RHS


∴ LHS = RHS


Hence Proved



Question 29.

Prove that




Answer:

To Prove:

Taking LHS,


= sin224° - sin2


We know that,


sin2A – sin2B = sin(A + B) sin(A – B)


= sin(24°+ 6°) sin(24° - 6°)


= sin 30° sin 18° …(i)


Now, we will find the value of sin 18°


Let x = 18°


so, 5x = 90°


Now, we can write


2x + 3x = 90°


so 2x = 90° - 3x


Now taking sin both the sides, we get


sin2x = sin(90° - 3x)


sin2x = cos3x [as we know, sin(90°- 3x) = Cos3x ]


We know that,


sin2x = 2sinxcosx


Cos3x = 4cos3x - 3cosx


2sinxcosx = 4cos3x - 3cosx


⇒ 2sinxcosx - 4cos3x + 3cosx = 0


⇒ cosx (2sinx - 4cos2x + 3) = 0


Now dividing both side by cosx we get,


2sinx - 4cos2x + 3 = 0


We know that,


cos2x + sin2x = 1


or cos2x = 1 – sin2x


⇒ 2sinx – 4(1 – sin2x) + 3 = 0


⇒ 2sinx – 4 + 4sin2x + 3 = 0


⇒ 2sinx + 4sin2x – 1 = 0


We can write it as,


4sin2x + 2sinx - 1 = 0


Now applying formula


Here, ax2 + bx + c = 0


So,


now applying it in the equation









Now sin 18° is positive, as 18° lies in first quadrant.



Putting the value in eq. (i), we get


= sin 30° sin 18°




= RHS


∴ LHS = RHS


Hence Proved



Question 30.

Prove that




Answer:

To Prove:

Taking LHS,


= sin272° - cos230°


= sin2(90° - 18°) - cos230°


= cos2 18° - cos230° …(i)


Here, we don’t know the value of cos 18°. So, we have to find the value of cos 18°


Let x = 18°


so, 5x = 90°


Now, we can write


2x + 3x = 90°


so 2x = 90° - 3x


Now taking sin both the sides, we get


sin2x = sin(90° - 3x)


sin2x = cos3x [as we know, sin(90°- 3x) = Cos3x ]


We know that,


sin2x = 2sinxcosx


Cos3x = 4cos3x - 3cosx


2sinxcosx = 4cos3x - 3cosx


⇒ 2sinxcosx - 4cos3x + 3cosx = 0


⇒ cosx (2sinx - 4cos2x + 3) = 0


Now dividing both side by cosx we get,


2sinx - 4cos2x + 3 = 0


We know that,


cos2x + sin2x = 1


or cos2x = 1 – sin2x


⇒ 2sinx – 4(1 – sin2x) + 3 = 0


⇒ 2sinx – 4 + 4sin2x + 3 = 0


⇒ 2sinx + 4sin2x – 1 = 0


We can write it as,


4sin2x + 2sinx - 1 = 0


Now applying formula


Here, ax2 + bx + c = 0


So,


now applying it in the equation









Now sin 18° is positive, as 18° lies in first quadrant.



Now, we know that


cos2x + sin2x = 1


or cosx = √1 – sin2x


∴cos 18° = √1 –sin2 18°






Putting the value in eq. (i), we get


= cos2 18° - cos230°








= RHS


∴ LHS = RHS


Hence Proved



Question 31.

Prove that tan 60 tan 420 tan 660 tan 780 = 1


Answer:

To Prove: tan 6° tan 42° tan 66° tan 78° = 1

Taking LHS,


= tan 6° tan 42° tan 66° tan 78°


Multiply and divide by tan 54° tan 18°



…(i)


We know that,


tan x tan(60° – x) tan (60° + x) = tan 3x



So, eq. (i) becomes




= 1


= RHS


∴ LHS = RHS


Hence Proved



Question 32.

If , prove that


Answer:

Given:

To Prove: a sin 2θ + b cos 2θ = b


Given:


We know that,



By Pythagoras Theorem,


(Perpendicular)2 + (Base)2 = (Hypotenuse)2


⇒ (a)2 + (b)2 = (H)2


⇒ a2 + b2 = (H)2



So,




Taking LHS,


= a sin 2θ + b cos 2θ


We know that,


sin 2θ = 2 sin θ cos θ


and cos 2θ = 1 – 2 sin2θ


= a(2 sin θ cos θ) + b(1 – 2 sin2θ)


Putting the values of sinθ and cosθ, we get





= b


= RHS


∴ LHS = RHS


Hence Proved




Exercise 15e
Question 1.

If , find the values of

(i) (ii)

(iii)


Answer:

Given: sin x = and <x< i.e, x lies in the Quadrant II .


To Find: i)sin ii)cos iii)tan


Now, since sin x =


We know that cos x =


cos x =


cos x =


cos x =


since cos x is negative in II quadrant, hence cos x = -


i) sin


Formula used:


sin =


Now, sin = = =


Since sinx is positive in II quadrant, hence sin


ii)cos


Formula used:


cos =


now, cos = = = = =


since cosx is negative in II quadrant, hence cos =


iii)tan


Formula used:


tan x =


hence, tan = = = = -


Here, tanx is negative in II quadrant.



Question 2.

If , find the values of

(i) (ii)

(iii)


Answer:

Given: cos x = = and <x<.i.e, x lies in II quadrant


To Find: i)sin ii)cos iii)tan


i) sin


Formula used:


sin =


Now, sin = = =


Since sinx is positive in II quadrant, hence sin


ii)cos


Formula used:


cos =


now, cos = = = = =


since cosx is negative in II quadrant, hence cos =


iii)tan


Formula used:


tan x =


hence, tan = = = = -


Here, tanx is negative in II quadrant.



Question 3.

If lies in Quadrant IV, find the values of

(i) (ii)

(iii)


Answer:

Given: sin x = and x lies in Quadrant IV.


To Find: i)sin ii)cos iii)tan


Now, since sin x =


We know that cos x =


cos x =


cos x =


cos x =


since cos x is positive in IV quadrant, hence cos x =


i) sin


Formula used:


sin =


Now, sin = = = = =


Since sinx is negative in IV quadrant, hence sin


ii)cos


Formula used:


cos =


now, cos = = = = =


since cosx is positive in IV quadrant, hence cos =


iii)tan


Formula used:


tan x =


hence, tan = = = = -1


Here, tanx is negative in IV quadrant.



Question 4.

If lies in Quadrant I, find the values of

(i) sin x

(ii) cos x

(iii) cot x


Answer:

Given: cos = and x lies in Quadrant I i.e, All the trigonometric ratios are positive in I quadrant


To Find: i)sin x ii)cos x iii)cot x


i)sin x


Formula used:


We have, Sin x =


We know that, cos = (cos x is positive in I quadrant)


2 – 1 = cos x


2 – 1 = cos x


2 – 1 = cos x


cos x =


Since, Sin x =


Sin x =


Sin x =


Hence, we have Sin x = .


ii)cos x


Formula used:


We know that, cos = (cos x is positive in I quadrant)


2 – 1 = cos x


2 – 1 = cos x


2 – 1 = cos x


cos x =


iii) cot x


Formula used:


cot x =


cot x = = =


Hence, we have cot x =



Question 5.

If , find the value of .


Answer:

Given: sin x = and 0< x< i.e, x lies in Quadrant I and all the trignometric ratios are positive in quadrant I.


To Find: tan


Formula used:


tan =


Now, cos x = (cos x is positive in I quadrant)


cos x = =


Since, tan =


Hence, tan



Question 6.

Prove that




Answer:

To Prove: cot - tan = 2cot x


Proof: Consider L.H.S,


cot - tan -


=


= ()



Here multiply and divide L.H.S by 2


=


= (2sinxcosx = sin2x)


()


cot - tan = 2cotx = R.H.S


L.H.S = R.H.S, Hence proved



Question 7.

Prove that




Answer:

To Prove: tan() = tan x + sec x


Proof: Consider L.H.S,


tan() = ()


= =


=


Multiply and divide L.H.S by


=


=


= ()


=


= ()


=


tan( ) = sec x + tan x = R.H.S


L.H.S = R.H.S, Hence proved



Question 8.

Prove that




Answer:

To Prove: = tan( )


Proof: Consider, L.H.S =


Multiply and divide L.H.S by


= =


= ()


= ()


=


= ()


=


Multiply and divide the above with cos


=


Here, since tan = 1


= tan() = R.H.S


Since, L.H.S = R.H.S, Hence proved.



Question 9.

Prove that




Answer:

To prove: tan( )+ tan( ) = 2secx


Proof: Consider, L.H.S = tan( )+ tan( )


tan( )+ tan( ) = +


()


= +


= +


= +


=


By Expanding the numerator we get,


= ()


tan( )+ tan( ) = 2secx = R.H.S


since L.H.S = R.H.S, Hence proved.



Question 10.

Prove that




Answer:

To Prove: = tan


Proof: consider, L.H.S =


= ()


= ()


=


= R.H.S


Since L.H.S = R.H.S, Hence proved.