If , find all the values of all the trigonometric ratios of θ.
We have,
Let Perpendicular = √3 k
and hypotenuse = 2k
where 'k' is some integer.
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
(2k)2 = (k√3)2 + AC2
4k2 = 3k2 + AC2
AC2 = (4 - 3)k2
AC2 = k2
→ AC = k, for some number k
Hence, the trigonometric ratios for the given θ are:
sinθ =
cosθ = AC/AB = k/(2k) = 1/2
tanθ = BC/AC = sinθ /cosθ = (k√3)/k = √3
cotθ = 1/tanθ = AC/BC = k/(k√3) = 1/√3
cosecθ = 1/sinθ = AB/BC = (2k)/(k√3) = 2/√3
secθ = 1/cosθ = AB/AC = (2k)/k = 2
If cosθ = 7/25, find all the values of all trigonometric ratios of θ.
We have, cosθ = (7k)/(25k) = base/hypotenuse (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= (25k)2 = BC2 + (7k)2 (for some value of k)
= 625k2 = BC2 + 49k2
= BC2 = 576k2
= BC2 = (24k)2
→ BC = 24k
Hence, the trigonometric ratios of the given θ are:
sinθ = BC/AB = (24k)/(25k) = 24/25
cosθ = 7/25
tanθ = BC/AC = sinθ /cosθ = 24/7
cotθ = AC/BC = 1/tanθ = 7/24
cosecθ = AB/BC = 1/sinθ = 25/24
secθ = AB/AC = 1/cosθ = 25/7
If tanθ = 15/8, find all the values of all the trignometeric ratios of θ.
We have, tanθ = 15k/8k = perpendicular/base (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
AB2 = (15k)2 + (8k)2
AB2 = 225k2 + 64k2
AB2 = 289k2 = (17k)2
→ AB = 17k
Hence, the trignometeric ratios for the given θ are:
sinθ = BC/AB = (15k)/(17k) = 15/17
cosθ = AC/AB = (8k)/(17k) = 8/17
tanθ = 15/8
cotθ = AC/BC = 1/tanθ = 8/15
cosecθ = AB/BC = 1/sinθ = 17/15
secθ = AB/AC = 1/cosθ = 17/8
If cotθ = 2, find all the values of all the trigonometric ratios of θ.
We have, cotθ = 2k/k = base/perpendicular (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
AB2 = (k)2 + (2k)2
AB2 = k2 + 4k2
AB2 = 5k2 = (k√5)2
→ AB = k√5
Hence, the trignometeric ratios for the given θ are:
sinθ = BC/AB = k/(k√5) = 1/√5
cosθ = AC/AB = (2k)/(k√5) = 2/√5
tanθ = BC/AC = sinθ /cosθ = k/(2k) = 1/2
cotθ = 2
cosecθ = AB/BC = 1/sinθ = √5
secθ = AB/AC = 1/cosθ = √5/2
If cosecθ = √10, find all the values of all the trignometeric ratios of θ.
We have, cosecθ = (k√10)/k = 1/sinθ (For some value of k)
→ sinθ = k/(k√10) = perpendicular/hypotenuse
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
(√10k)2 = (k)2 + AC2
AC2 = 10k2 - k2
AC2 = 9k2 = (3k)2
→ AC = 3k
Hence, the trignometeric ratios for the given θ are:
sinθ = 1/√10
cosθ = AC/AB = (3k)/(k√10) = 3/√10
tanθ = BC/AC = sinθ /cosθ = 1/3
cotθ = AC/BC = 1/tanθ = 3
cosecθ = √10
secθ = AB/AC = 1/cosθ = √10/3
If , find all the values of all the trignometeric ratios of θ.
We have, sinθ = = perpendicular/hypotenuse (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
{(a2 + b2)k}2 = {(a2 - b2)k}2 + AC2
a4k2 + b4k2 + 2a2b2k2 = a4k2 + b4k2 - 2a2b2k2 + AC2
AC2 = 4a2b2k2 = (2abk)2
→ AC = 2abk
Hence, the trigonometric ratios for the given θ are:
sinθ =
cosθ = AC/AB = =
tanθ = BC/AC = sinθ /cosθ =
cotθ = AC/BC = 1/tanθ =
cosecθ = AB/BC = 1/sinθ =
secθ = AB/AC = 1/cosθ =
If 15 cotA = 8, find the values of sinA and secA.
We have, 15 cotA = 8
→ cotA = (8k)/(15k) = 1/tanA = AC/BC (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
AB2 = (15k)2 + (8k)2
AB2 = 225k2 + 64k2
AB2 = 289k2
= (17k)2
→ AB = 17k
∴ sinA = BC/AB = (15k)/(17k) = 15/17
secA = 1/cosA = AB/AC = (17k)/(8k) = 17/8
If sinA = 9/41, find the values of cosA and tanA.
We have, sinA = (9k)/(41k) = BC/AB (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= (41k)2 = (9k)2 + AC2
= 1681k2 = 81k2 + AC2
AC2 = 1600k2
= (40k)2
→ AC = 40k
∴ cosA = AC/AB = (40k)/(41k) = 40/41
tanA = BC/AC = sinA/cosA = 9/40
If cosθ = 0.6, show that (5sinθ - 3tanθ ) = 0
We have cosθ = 0.6 = (6k)/(10k) = AC/AB (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= (10k)2 = BC2 + (6k)2
= 100k2 = BC2 + 36k2
= BC2 = 64k2
= (8k)2
→ BC = 8k
∴ sinθ = BC/AB = (8k)/(10k) = 0.8
tanθ = sinθ /cosθ = 0.8/0.6
consider, the LHS,
5sinθ - 3tanθ = 5(0.8) - 3(0.8/0.6)
= 4 - 3(0.4/0.3)
= 4(0.3) - 3(0.4)
= 1.2 - 1.2
= 0
= RHS
HENCE PROVED
If cosecθ = 2, show that
We have, cosecθ = 2 = 1/sinθ
⇒ θ = 30°
consider LHS
= cotθ +
= √3 +
= √ 3 +
=
=
=
= 2
= RHS
HENCE PROVED
If tanθ = 1/√7 , show that
We have, tanθ = k/(k√7) = BC/AC (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= AB2 = (k)2 + (k√7)2
= AB2 = k2 + 7k2
= 8k2 = (2k√2)2
→ AB = 2k√2
∴ cosecθ = AB/BC = 2k√2
secθ = AB/AC = =
consider the LHS,
LHS =
=
=
= 48/64
= 3/4
= RHS
HENCE PROVED
If tanθ = 20/21, show that
We have, tanθ = (20k)/(21k) = BC/AC (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= AB2 = (20k)2 + (21k)2
= AB2 = 400k2 + 441k2
= AB2 = 841k2
= (29k)2
→ AB = 29k
∴ sinθ = BC/AB = (20k)/(29k) = 20/29
cosθ = AC/AB = (21k)/(29k) = 21/29
consider, the LHS
LHS = =
=
= 30/70
= 3/7
= RHS
HENCE PROVED
If secθ = 5/4, show that
We have, secθ = 5/4 = 1/cosθ
→ cosθ = (4k)/(5k) = AC/AB (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= (5k)2 = BC2 + (4k)2
= 25k2 = BC2 + 16k2
= BC2 = 9k2
→ BC = 3k
∴ sinθ = BC/AB = (3k)/(5k) = 3/5
consider the LHS
LHS = =
=
=
=
=
= 12/7
= RHS
HENCE PROVED
If cotθ = 3/4, show that
We have, cotθ = (3k)/(4k) = AC/BC (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= AB2 = (4k)2 + (3k)2
= AB2 = 16k2 + 9k2
= AB2 = 25k2
= (5k)2
→ AB = 5k
∴ sinθ = BC/AB = (4k)/(5k) = 4/5
cosθ = AC/AB = (3k)/(5k) = 3/5
consider the LHS
LHS =
=
=
=
= 1/√7
= RHS
HENCE PROVED
If sinθ = 3/4, show that
We have, sinθ = (3k)/(4k) = BC/AB (For some value of k)
Consider the LHS
LHS = =
=
=
= cosθ /sinθ
= cotθ
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= (4k)2 = (3k)2 + AC2
= 16k2 = 9k2 + AC2
= AC2 = 7k2
→ AC = k√7
∴ cotθ = AC/BC = k/(k√7) = 1/√7
∴ LHS = RHS
HENCE PROVED
If sinθ = a/b, show that
Consider LHS,
LHS = secθ + tanθ =
= (1)
We have, sinθ = (ak)/(bk) = BC/AB (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= (bk)2 = (ak)2 + AC2
= AC2 = b2k2 - a2k2
→ AC =
∴ cosθ = AC/AB = =
∴ from(1)
LHS = =
=
=
= RHS
HENCE PROVED
If cosθ = 3/5, show that
We have, cosθ = (3k)/(5k) = AC/AB (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= (5k)2 = BC2 + (3k)2
= 25k2 = BC2 + 9k2
= BC2 = 16k2
= (4k)2
→ BC = 4k
∴ sinθ = BC/AB = (4k)/(5k) = 4/5
tanθ = BC/AC = sinθ /cosθ = (4k)/(3k) = 4/3
cotθ = 1/tanθ = 3/4
consider the LHS
LHS = =
=
= 3/160
= RHS
HENCE PROVED
If tanθ = 4/3, show that sinθ + cosθ = 7/5
We have, tanθ = (4k)/(3k) = BC/AC (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= AB2 = (4k)2 + (3k)2
= AB2 = 16k2 + 9k2
= AB2 = 25k2
= (5k)2
→ AB = 5k
sinθ = BC/AB = (4k)/(5k) = 4/5
cosθ = AC/AB = (3k)/(5k) = 3/5
consider LHS = sinθ + cosθ =
= 7/5
= RHS
HENCE PROVED
If tanθ = a/b, show that
Consider the LHS =
(Dividing the numerator and denominator by cos θ)
=
=
=
= RHS
HENCE PROVED
If 3 tan θ = 4, show that
We have, 3 tan θ = 4
→ tan θ = 4/3 (1)
Consider the LHS =
(Dividing the numerator and denominator by cosθ )
=
= (from(1))
=
= 8/10
= 4/5
= RHS
HENCE PROVED
If 3cotθ = 2, show that
We have 3cotθ = 2
→ cotθ = 2/3 (1)
Consider the LHS =
(Dividing the numerator and denominator by sinθ )
=
=
= (from(1))
=
= 2/6
= 1/3
= RHS
HENCE PROVED
If 3cotθ = 4, show that
Consider the LHS =
=
=
= cos2θ – sin2θ (∵ cos2θ + sin2θ = 1)
= RHS
HENCE PROVED
If secθ = 17/8, verify that
We have, secθ = (17k)/(8k) = AB/AC (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= (17k)2 = BC2 + (8k)2
= 289k2 = BC2 + 64k2
= BC2 = 225k2
→ BC = 15k
∴ sinθ = BC/AB = (15k)/(17k) = 15/17
cosθ = AC/AB = (8k)/(17k) = 8/17
tanθ = BC/AC = sinθ /cosθ = 15/8
consider the LHS =
=
=
=
= ( - 33)/( - 611)
= 33/611
Now consider RHS =
=
=
= ( - 33)/( - 611)
= 33/611
∴ RHS = LHS
HENCE PROVED
In the adjoining figure, ∠B = 90°, ∠ BAC = θ°, BC = CD = 4cm, AD = 10cm. find
i. sinθ
ii. cosθ
Clearly, Δ ABC and Δ ABD are right angled triangles
where AD = 10cm BC = CD = 4cm
BD = BC + CD = 8cm
Applying Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AD2 = BD2 + AB2
= (10)2 = (8)2 + AB2
= 100 = 64 + AB2
= AB2 = 36
= (6)2
→ AB = 6cm
Now applying Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AC2 = BC2 + AB2
= AC2 = (4)2 + (6)2
= AC2 = 16 + 36
= 52
→ AC = √52
= 2√13cm
i. sinθ = BC/AC =
= 2/√13
= (2√13)/13
ii. cosθ = AB/AC =
= 3/√13
= (3√13)/13
In a Δ ABC, ∠ B = 90°, AB = 24cm and BC = 7cm. Find
a) sinA
b) cosA
c) sinC
d) cosC
Clearly Δ ABC is a right angled triangle,
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴ AC2 = BC2 + AB2
= AC2 = (7)2 + (24)2
= AC2 = 49 + 576
= AC2 = 625
→ AC = 25
a) sinA = BC/AC = 7/25
b) cosA = AB/AC = 24/25
c) sinC = AB/AC = 24/25
d) cosC = BC/AC = 7/25
In a Δ ABC, ∠ C = 90°, ∠ ABC = θ° , BC = 21units and AB = 29units. Show that cos2θ –sin2θ = 41/841
Δ ABC is a right angled triangle
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = AC2 + BC2
= (29)2 = AC2 + (21)2
= 841 = AC2 + 441
= AC2 = 400
→ AC = 20
∴ sinθ = AC/AB = 20/29
cosθ = BC/AB = 21/29
cos2θ –sin2θ = (21/29)2 - (20/29)2
=
= 41/841
= RHS
HENCE PROVED
In a Δ ABC, ∠ B = 90°, AB = 12cm and BC = 5cm. Find
i. cosA
ii. cosecA
iii. cosC
iv. cosecC
Δ ABC is a right angled triangle
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AC2 = BC2 + AB2
= AC2 = (5)2 + (12)2
= AC2 = 25 + 144
= AC2 = 169
= (13)2
→ AC = 13
i. cosA = AB/AC = 12/13
ii. cosecA = AC/BC = 13/5
iii. cosC = BC/AC = 5/13
iv. cosecC = AC/AB = 13/12
If sinα = 1/2, prove that 3cosα - 4cos3α = 0
We have, sinα = k/(2k) = BC/AB (For some value of k)
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= (2k)2 = (k)2 + AC2
= 4k2 = k2 + AC2
= AC2 = 3k2
→ AC = k√3
∴ cosα = AC/AB = (k√3)/(2k) = √3/2
Then, 3cosα - 4cos3α =
=
= 0
LHS = RHS
HENCE PROVED
In a Δ ABC, ∠ B = 90° and tanA = 1/√3. Prove that
i. sinA cosC + cosA sinC = 1
ii. cosA cosC - sinA sinC = 0
We have, tanA = k/(k√3) = BC/AB
Δ ABC is a right angled triangle
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AC2 = BC2 + AB2
= AC2 = (k)2 + (k√3)2
= AC2 = k2 + 3k2
= AC2 = 4k2
→ AC = 2k
∴ sinA = BC/AC = k/(2k) = 1/2
cosA = AB/AC = (k√3)/(2k) = √3/2
sinC = AB/AC = (k√3)/(2k) = √3/2
cosC = = BC/AC = k/(2k) = 1/2
i. sinA cosC + cosA sinC = (1/2)(1/2) + ( √3/2)( √3/2)
=
= 4/4
= 1
∴ RHS = LHS
HENCE PROVED
ii. cosA cosC - sinA sinC = (1/2)(√3/2) - (1/2)(√3/2)
= (√3/4) - (√3/4)
= 0
∴ RHS = LHS
HENCE PROVED
If ∠ A and ∠ B are acute angles such that sinA = sinB then prove that ∠ A = ∠ B.
Consider ΔABC to be a right - angled triangle.
∴ sinA = BC/AB
sinB = AC/AB
Given that sinA = sinB
BC/AB = AC/AB
→ BC = AC
→ ∠ A = ∠ B (In a triangle, angles opposite to equal angles are equal)
If ∠ A and∠ B are acute angles such that tanA = tanB then prove that ∠ A = ∠ B.
Consider ΔABC to be a right - angled triangle.
∴ tanA = BC/AC
tanB = AC/BC
Given that tanA = tanB
BC/AC = AC/BC
BC2 = AC2
→ BC = AC
→ ∠ A = ∠ B (In a triangle, angles opposite to equal angles are equal)
In a right ΔABC, right - angled at B, it tanA = 1 then verify that 2sinA cosA = 1
Consider ΔABC to be a right - angled triangle.
tanA = 1 = BC/AB
→ BC = AB
Also, tanA = 1 = sinA/cosA
→ sinA = cosA
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AC2 = BC2 + AB2
= AC2 = 2BC2
= (AC/BC)2 = 2
= AC/BC = √2
→ cosecA = √2
→ sinA = 1/√2 = cosA
2 sinA cosA = 2(1/√2)( 1/√2)
= 2(1/2)
= 1
∴ LHS = RHS
HENCE PROVED
In the given figure of ΔPQR, ∠ P = θ° and ∠ R = ϕ°. Find
a.
b.
c. Cosθ
Δ PQR is a right - angled triangle
By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴PR2 = RQ2 + PQ2
= (x + 2)2 = x2 + PQ2
= x2 + 4 + 4x = x2 + PQ2
PQ2 = 4 + 4x
→ PQ = 2
a. cotϕ = RQ/PQ =
∴ × =
= x/2
b. tanθ = RQ/PQ =
∴ =
= x×
= x2/2
c. cosθ = PQ/RP =
If x = cosecA + cosA and y = cosecA - cosA the prove that
x + y = cosecA + cosA + cosecA - cosA
= 2cosecA
x - y = cosecA + cosA - (cosecA - cosA)
= cosecA + cosA - cosecA + cosA
= 2cosA
Consider the LHS, =
= sin2A + cos2A - 1
= 1 - 1 (∵sin2A + cos2A = 1)
= 0
= RHS
HENCE PROVED
If x = cotA + cosA and y = cotA - cosA, prove that
x - y = cotA + cosA - (cotA - cosA)
x - y = cotA + cosA - cotA + cosA
x - y = 2cosA
x + y = cotA + cosA + cotA - cosA
x + y = 2cotA
Consider the LHS =
= cos2A + sin2A
= 1 (∵sin2A + cos2A = 1)
= RHS
HENCE PROVED