Without using trigonometric tables, evaluate:
= = = 1
(∵ cos (90-θ) = sin θ and (90-θ) lies in the first quadrant where
all the angles are taken as positive.)
Solve:
= = = = = 1
Solve:
= = = 1 (∵ cot (90-θ) = tan θ)
Solve:
= = = 1
Solve:
= = = = = 1
Solve:
= = = 1 (∵ tan (90-θ) = cot θ)
Without using trigonometric tables, prove that:
cos 81° - sin 9° = 0
Consider cos 81° - sin 9° = cos 81° - sin (90 - 81)°
= cos 81° - cos 81°
= 0
Hence, proved.
Without using trigonometric tables, prove that:
tan 71° - cot 19° = 0
Consider tan 71° - cot 19° = tan 71° - cot (90 - 71)°
= tan 71° - tan 71°
= 0
Hence, proved.
Without using trigonometric tables, prove that:
cosec 80° - sec 10° = 0
Consider cosec 80° - sec 10° = cosec 80° - sec (90 - 10)°
= cosec 80° - cosec 80°
= 0
Hence, proved.
Without using trigonometric tables, prove that:
cosec2 72° - tan2 18° = 1
Consider cosec2 72° - tan2 18° = cosec2 72° - tan2 (90 - 72)°
= cosec2 72° - cot2 72°
= 1
(∵1 + cot2 θ = cosec2 θ ⇒ cosec2 θ - cot2 θ = 1 )
Hence, proved.
Without using trigonometric tables, prove that:
cos275° + cos215° =1
Consider cos2 75° + cos2 15° = cos2 75° + cos2 (90 - 75)°
= cos2 75° + sin2 75°
= 1
(∵cos2θ + sin2 θ = 1)
Hence, proved.
Without using trigonometric tables, prove that:
tan266° - cot224° = 0
Consider tan2 66° - cot2 24° = tan2 66° - cot2 (90 - 66)°
= tan2 66° - tan2 66°
= 0
Hence, proved.
Without using trigonometric tables, prove that:
sin248o + sin242° = 1
Consider sin2 48° + sin2 42° = sin2 48° + sin2 (90 - 48)°
= sin2 48° + cos2 48°
= 1
(∵cos2θ + sin2 θ = 1 )
Hence, proved.
Without using trigonometric tables, prove that:
cos257° - sin233° = 0
Consider cos2 57° - sin2 33° = cos2 57° - sin2 (90 - 57)°
= cos2 57° - cos2 57°
= 0
Hence, proved.
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° - cos 25°) = 0
Consider (sin 65° + cos 25°)(sin 65° - cos 25°)
= sin2 65° - cos2 25°
= sin2 65° - cos2 (90 - 65)°
= sin2 65° - sin2 65°
= 0
Hence, proved.
Without using trigonometric tables, prove that:
sin 53° cos 37° + cos 53° sin 37° = 1
Consider (sin 53° cos 37°) + (cos 53° sin 37°)
= (sin 53° cos (90-53)°) + (cos 53° sin (90-53)°)
= sin2 53° + cos2 53°
= 1
Hence, proved.
cos 54° cos 36° - sin 54° sin 36° = 0
Consider (cos 54° cos 36°) - (sin 54° sin 36°)
= (cos 54° cos (90-54)°) - (sin 54° sin (90-54)°)
= (cos 54° sin54°) - (sin 54° cos 54°)
= 0
Hence, proved.
sec 70° sin 20° + cos 20° cosec 70° = 2
Consider L.H.S.
= (sec 70° sin 20°) + (cos 20° cosec 70°)
= (sec (90-20)° sin 20°) + (cos 20° cosec (90-20)°)
= (cosec 70° sin70°) + (cos 20° sec 20°)
= 1 + 1 (∵ cosec θ = 1/sinθ and sec θ = 1/cos θ )
= 2 = R.H.S.
Hence, proved.
sin 35° sin 55° - cos 35° cos 55° = 0
Consider L.H.S. = (sin 35° sin 55°) - (cos 35° cos 55°)
= (sin 35° sin (90-35)°) - (cos 35° cos (90-35)°)
= (sin 35° cos 35°) - (cos 35° sin 35°)
= 0 = R.H.S.
Hence, proved.
(sin 72° + cos 18°)(sin 72° - cos 18°) = 0
Consider (sin 72° + cos 18°)(sin 72° - cos 18°)
= sin2 72° - cos2 18°
= sin2 72° - cos2 (90-72)°
= sin2 72° - sin2 72°
[since, cos(90 - θ) = sinθ]= 0
Hence, proved.
tan 48° tan 23° tan 42° tan 67° = 1
Consider L.H.S.
= tan 48° tan 23° tan 42° tan 67°
= tan 48° tan 42° tan 23° tan 67°
= tan 48° tan (90-48)° tan 23° tan (90-23)°
= (tan 48° cot 48°) (tan 23° cot 23°)
= (1) × (1) = 1 = R.H.S
Hence, proved.
Prove that:
Consider L.H.S
= + - 2 cos 70° cosec 20°
= + - 2 cos 70° cosec (90-70)°
= + - 2 cos 70° sec 70°
= 1 + 1 + - 2 = 0 = R.H.S.
Hence, proved.
Prove that :
Consider L.H.S.
= + cos 59° cosec 31°
= + cos 59° cosec (90-59)°
= + cos 59° sec 59°
= 1 + 1 = 2 = R.H.S.
Hence, proved.
Prove that:
Consider L.H.S.
=
=
=
= 2 –(2/5) – 3(1 × 1 × 1)/5
= 2 – (2/5) – (3/5)
= (10 – 2 - 3)/5
= 5/5
= 1 = R.H.S.
Hence, proved.
Prove that:
To prove:
Proof:
Consider L.H.S.
=
Now look for the pairs whose angles give sum of 90°.
Here the sum of angles of tan 10° and tan 80° gives 90°.
Also the sum of angles of tan 40° and tan 50° gives 90°.
So, now change tan 80° into tan(90-10°) and tan 50° into tan(90-40°)
=
We know tan(90-θ) = cot θ
tan 30° = 1/√3
=
= 1 +
Since tan θ = 1/cot θ
= 1 +
= 1 + 1 = 2 = R.H.S.
Hence, proved.
Note: In such questions take the pairs whose angles give sum of 90° ,change one of them in the form of 90-θ and substitute remaining known values.
Like in this case tan 50° is changed into tan(90-40)° so that it will can be written as cot 50° and
tan 50° × cot 50° gives us value 1.
Prove that:
Consider L.H.S.
=
=
=
=
= (7/3) – (4/3) = 43/3 = 1 = R.H.S.
Hence, proved.
Prove that:
sin θ cos (90° - θ) + sin (90° - θ ) cos θ = 1
Consider L.H.S.
= sin θ cos (90° - θ) + sin (90° - θ) cos θ
= sin θ sin θ + cos θ cos θ
= sin2 θ + cos2 θ
= 1 = R.H.S.
Hence, proved.
Prove that:
Consider L.H.S.
=
=
= 1 +1 = 2 = R.H.S.
Hence, proved.
Prove that:
Consider L.H.S.
=
=
=
=
=
=
Hence, proved.
Prove that:
Consider L.H.S.
=
=
= = 1+1 = 2 = R.H.S.
Hence, proved.
Prove that:
Consider L.H.S.
=
=
= =
=
= 2 cosec θ = R.H.S.
Hence, proved.
Prove that:
Consider L.H.S.
=
=
=
= = 2/3 = R.H.S.
Hence, proved.
cot θ tan (90° -θ) - sec (90° - θ)cosec θ +√3tan 12°tan 60°tan 78° = 2
Consider L.H.S.
= cot θ tan (90° -θ) - sec (90° - θ)cosec θ +√3tan 12°tan 60°tan 78°
= cot θ cot θ - cosec θ cosec θ +√3 tan 60° tan 12° tan 78°
= cot2 θ – cosec2 θ +√3 tan 60° tan 12° tan(90-12)°
= - (cosec2 θ - cot2 θ) +√3 tan 60° tan 12° cot 12°
= - 1 + √3(√3 × tan 12° cot 12°)
= - 1 + √3(√3 × 1)
= - 1 + 3
= 2 = R.H.S.
Hence, proved.
Prove that:
tan 5° tan 25° tan 30° tan 65° tan 85° = 1/√3
Consider L.H.S.
= tan 5° tan 25° tan 30° tan 65° tan 85°
= tan 5° tan 85° tan 25° tan 65° tan 30°
= tan 5° tan (90-5)° tan 25° tan (90-25)° tan 30°
= (tan 5° cot 5°) (tan 25° cot 25°) tan 30°
= 1 × 1 × (1/√3)
= 1/√3 = R.H.S.
Hence, proved.
cot 12° cot 38° cot 52° cot 60° cot 78° = 1/√3
Consider L.H.S.
= cot 12° cot 38° cot 52° cot 60° cot 78°
= (cot 12° cot 78°) (cot 38° cot 52°) cot 60°
= (cot 12° cot (90-12)°) (cot 38° cot (90-38)°) cot 60°
= (cot 12° tan 12°) (cot 38° tan 38°) cot 60°
= 1 × 1 × (1/√3)
= 1/√3 = R.H.S.
Hence, proved.
cos 15° cos 35° cosec 55° cos 60° cosec 75° =1/2
Consider L.H.S. = cos 15° cos 35° cosec 55° cos 60° cosec 75°
= cos 15° cosec 75° cos 35° cosec 55° cos 60°
= cos 15° cosec (90-15)° cos 35° cosec (90-35)° cos 60°
= (cos 15° sec 15°) × (cos 35° sec 35°) × cos 60°
= (1) × (1) × (1/2)
= 1/2 = R.H.S.
Hence, proved.
cos 1° cos 2° cos 3° ... cos 180° = 0
Consider L.H.S. = cos 1° cos 2° cos 3° ... cos 180°
= cos 1° cos 2° cos 3° …× cos 90° × … cos 180°
= cos 1° cos 2° cos 3° ... × 0 × cos 180°
= 0 (∵ cos 90° = 0)
Hence, proved.
Prove:
Consider L.H.S.
=
=
=
= 12 + 12
1 + 1 = 2 = R.H.S.
Hence, proved.
Prove that:
sin (70°+θ) — cos (20° — θ) = 0
Consider L.H.S.
= sin (70°+θ) — cos (20° — θ)
= sin (70°+θ) — cos [90°-(70° + θ)]
= sin (70°+θ) — sin (70° + θ)
= 0 = R.H.S.
Hence, proved.
tan (55° — θ) — cot (35° + θ) = θ
Consider L.H.S.
= tan (55° — θ) — cot (35° + θ)
= tan (90°-(35° +θ)) — cot (35° + θ)
= cot (35° + θ) - cot (35° + θ)
= 0
Hence, proved.
cosec (67° + θ) — sec (23° — θ) = 0
Consider L.H.S.
= cosec (67° + θ) — sec (23° — θ)
= cosec (67° + θ) — sec (90° —(23° + θ))
= cosec (67° + θ) - cosec (67° + θ)
= 0
Hence, proved.
cosec (65° + θ) — sec (25° —θ) — tan (55° — θ) + cot (35° + θ) =0
Consider L.H.S.
= cosec (65° + θ) — sec (25° —θ) — tan (55° — θ) + cot (35° + θ)
= cosec (65° + θ) — sec (90° - (65° + θ)) — tan (90° - (35° + θ)) + cot (35° + θ)
= cosec (65° + θ) — cosec (65° + θ)) — cot (35° + θ) + cot (35° + θ)
= 0 = R.H.S.
Hence, proved.
sin (50° +θ) — cos (40° — θ) + tan 1°tan 10°tan 80°tan 89° =1
Consider L.H.S.
= sin (50° +θ) — cos (40° — θ) + tan 1° tan 10° tan 80° tan 89°
= sin ((90°-(40° - θ)) — cos (40° — θ) + (tan 1° tan 89°)(tan10° tan 80°)
= cos (40° - θ) - cos (40° - θ) + [tan 1° tan (90°-1°)][tan10° tan(90°-10°)]
= 0 + [(tan 1° cot 1°] [tan10° cot 10°]
= 0 + [1] × [1]
= 0 + 1 = 1 = R.H.S.
Hence, proved.
Express each of the following in terms of T-ratios of angles lying between 0° and 45°:
sin 67° + cos 75°
Consider sin 67° + cos 75° = sin (90-23)° + cos (90-15)°
= cos 23° + sin 15°
Express each of the following in terms of T-ratios of angles lying between 0° and 45°:
cot 65° + tan 49°
Consider cot 65° + tan 49° = cot (90-25)° + tan (90-41)°
= tan 25° + cot 41°
Express each of the following in terms of T-ratios of angles lying between 0° and 45°:
sec 78° + cosec 56°
Consider sec 78° + cosec 56° = sec (90-12)° + cosec (90-34)°
= cosec 12° + sec 34°
Express each of the following in terms of T-ratios of angles lying between 0° and 45°:
cosec 54° + sin 72°
Consider cosec 54° + sin 72° = cosec (90-36)° + sin (90-18)°
= sec 36° + cos 18°
If A, B and C are the angles of a ABC, prove that
Since A, B and C are the angles of a triangle, therefore sum of the angles equals 180°.
∴ A + B + C = 180° ⇒ C + A = 180° - B
Now, consider L.H.S. =
=
=
= cot = R.H.S.
Hence, proved.
If cos 2 θ = sin 4 θ, where 2θ and 4θ are acute angles, find the value of θ .
given: cos 2θ = sin 4θ
To find: the value of θ
Solution:
Consider cos 2θ = sin 4θ,
Since,
sin( 90° - θ) = cos θ
∴We can rewrite it as:
sin (90° - 2θ) = sin 4θ
On comparing both sides, we get,
90° - 2θ = 4θ
⇒ 90° = 4θ + 2θ⇒ 6θ = 90°
⇒ θ = 15°
If sec 2A = cosec (A — 42°), where 2A is an acute angle, find the value of A.
We are given that: sec 2A = cosec (A – 42°)
∴We can rewrite it as: cosec (90° - 2A) = cosec (A – 42°)
On comparing both sides, we get,
90° - 2A = A – 42 °
⇒ A + 2A = 90° + 42°
⇒ 3A = 132°
⇒ A = 44°
If sin 3A = cos (A — 26°), where 3A is an acute angle, find the value of A.
We are given that: sin 3A = cos (A - 26°)
∴We can rewrite it as: cos (90° - 3A) = cos (A - 26°)
On comparing both sides, we get,
90° - 3A = A - 26°
⇒ A + 3A = 90° + 26°
⇒ 4A = 116°
⇒ A = 29°
If tan 2A = cot (A — 12°), where 2A is an acute angle, find the value of A.
We are given that: tan 2A = cot (A – 12°)
∴We can rewrite it as: cot (90° - 2A) = cot (A – 12°)
On comparing both sides, we get,
90° - 2A = A – 12 °
⇒ A + 2A = 90° + 12°
⇒ 3A = 102°
⇒ A = 34°
If sec 4A = cosec (A — 15°), where 4A is an acute angle, find the value of A.
We are given that: sec 4A = cosec (A – 15°)
∴We can rewrite it as: cosec (90° - 4A) = cosec (A – 15°)
On comparing both sides, we get,
90° - 4A = A – 15 °
⇒ A + 4A = 90° + 15°
⇒ 5A = 105°
⇒ A = 21°
Prove that:
2/3 cosec2 58°-2/3 cot 58° tan 32° -5/3 tan 13° tan 37° tan 45° tan 53° tan 77° = —1.
Consider L.H.S.
= cosec2 58°- cot 58° tan 32° - tan 13° tan 37° tan 45° tan 53° tan 77°
= cosec2 58°- cot 58° tan (90-58)° - × [tan 13° tan 77°] × [tan 37° tan 53° ] × tan 45°
= cosec2 58°- cot 58° cot 58° - × [tan 13° tan (90-13)°] × [tan 37° tan (90-37)° ] × 1
= cosec2 58°- cot2 58° - × [tan 13° cot 13°] × [tan 37° cot 37° ]×1
= [cosec2 58°- cot2 58°] - × [1] × [1] × 1
= [1] -
= (2/3) – (5/3)
= (2 - 5)/3
= -3/3
= -1 = R.H.S.
Hence, proved.