Prove each of the following identities:
(1 – cos2 θ)cosec2 θ = 1
Consider the left – hand side:
L.H.S. = (1 – cos2θ) × cosec2θ
= (sin2θ) × cosec2θ (∵ sin2θ + cos2 θ = 1)
= 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
(1 + cot2 θ) sin2θ = 1
Consider the left – hand side:
L.H.S. = (1 + cot2θ) × sin2 θ
= (cosec2 θ) × sin2 θ (∵ 1 + cot2 θ = cosec2 θ)
= 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
(sec2 θ – 1) cot2 θ = 1
Consider the left – hand side:
L.H.S. = (sec2 θ – 1) × cot2 θ
= (tan2θ) × cot2θ (∵ 1 + tan2 θ = sec2 θ)
= 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
(sec2 θ – 1)(cosec2 θ – 1) = 1
Consider the left – hand side:
L.H.S. = (sec2 θ – 1)(cosec2 θ – 1)
= (tan2θ) × cot2θ (∵ 1 + tan2 θ = sec2 θ and 1 + cot2 θ = cosec2 θ)
= 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
(1 – cos2 θ) sec2 θ = tan2 θ
Consider the left – hand side:
L.H.S. = (1 – cos2 θ) sec2 θ
= (sin2θ) × (1/cos2θ) (∵ sin2 θ + cos2 θ = 1
= tan2 θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. =
= (sin2θ) + (1/sec2 θ) (∵ 1 + tan2 θ = sec2 θ)
= (sin2θ) + (cos2θ) (∵ sin2 θ + cos2 θ = 1)
= 1
= R.H.S.
Hence, proved.
Consider the left – hand side:
L.H.S. =
= (1/sec2θ) + (1/cosec2 θ) (∵ 1 + tan2 θ = sec2 θ and 1 + tan2 θ = sec2 θ)
= (cos2 θ) + (sin2θ) (∵ sin2 θ + cos2 θ = 1)
= 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
(1 + cos θ )(1 – cos θ)(1 + cot2 θ) = 1
Consider the left – hand side:
L.H.S. = (1 + cos θ)(1 – cos θ)(1 + cot2 θ)
= (1 – cos2 θ) × cosec2 θ (∵ 1 + cot2 θ = cosec2 θ)
= (sin2 θ) × cosec2 θ (∵ sin2θ + cos2 θ = 1)
= 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
(cosec θ)(1 + cos θ)(cosec θ – cot θ) = 1
To prove: (cosec θ)(1 + cos θ)(cosec θ – cot θ) = 1
Proof:
Consider the left – hand side:
(cosec θ) (1 + cos θ)(cosec θ – cot θ)
⇒ (cosec θ) (1 + cos θ)(cosec θ – cot θ) = (cosec θ + cosec θ cos θ)(cosec θ – cot θ)
since cosec θ = 1/sin θ
⇒ (cosec θ) (1 + cos θ)(cosec θ – cot θ)=
Also
So,
⇒ (cosec θ) (1 + cos θ)(cosec θ – cot θ) =(cosec θ + cot θ)(cosec θ – cot θ)
Use the formula (a + b)(a - b) = a2 - b2
⇒ (cosec θ) (1 + cos θ)(cosec θ – cot θ) =(cosec2 θ - cot2 θ)
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. = cot2 θ –
=
=
= ( – sin2 θ) × sin2 θ (∵ sin2θ + cos2 θ = 1)
= – 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. = tan2 θ –
=
=
= ( – cos2 θ) × cos2 θ (∵ sin2θ + cos2 θ = 1)
= – 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. = cos2 θ +
= cos2 θ + (∵ 1 + cot2 θ = cosec2 θ)
= cos2 θ + sin2 θ
= ( – cos2 θ) × cos2 θ (∵ sin2θ + cos2 θ = 1)
= – 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. =
=
=
= 2 sec2 θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
sec θ(1 – sin θ)(sec θ + tan θ) = 1
Consider the left – hand side:
L.H.S. = sec θ(1 – sin θ)(sec θ + tan θ)
= × (1 – sin θ) ×
= × (1 – sin θ) ×
=
=
= 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
sin θ (1 + tan θ) + cos θ (1+ cot θ) = (sec θ + cosec θ)
To prove: sin θ (1 + tan θ) + cos θ (1+ cot θ) = (sec θ + cosec θ)
Proof:
Consider the left – hand side:
L.H.S. = sin θ (1 + tan θ) + cos θ (1+ cot θ)
= sin θ (1 + ) + cos θ (1+ )
= sin θ + (cos θ) ×
= (cos θ + sin θ)
= (cos θ + sin θ)
We know cos2θ + sin2θ = 1
=
=
= cosec θ + sec θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. =
=
= 1+
=
=
=
= 1/sin θ
= cosec θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. =
=
=
=
=
=
= 1/cos θ
= sec θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. =
=
=
=
= tan θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. =
=
=
=
=
= 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. =
Adding both the fractions, we get=
As sin2θ + cos2θ = 1, we have
=
=
= 2/sin θ
= 2cosec θ
= R.H.S.
Hence, proved.
Prove :
Consider L.H.S. =
=
= +
=
=
=
= sec θ cosec θ + 1
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the left – hand side:
L.H.S. =
=
=
=
=
= cos2 θ + sin2 θ + sin θ cos θ
= 1 + cos θ sin θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
=
=
=
=
= cos θ + sin θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. = (1 + tan2 θ) (1 + cot2 θ)
= (sec2 θ)(cosec2 θ)
=
=
=
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
=
=
=
=
= sin θ (cos3 θ) + cos θ (sin3 θ)
= sin θ cos θ (cos2 θ + sin2 θ)
= sin θ cos θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
sin6 θ + cos6 θ = 1 – 3 sin2 θ cos2 θ
Consider L.H.S. = sin6 θ + cos6 θ
= (sin2 θ)3 + (cos2 θ)3
= (sin2 θ + cos2 θ)( sin4 θ + cos4 θ – sin2 θ cos2 θ)
[Using a3 + b3 = (a + b)(a2 + b2 – ab)]
= ( sin4 θ + cos4 θ – sin2 θ cos2 θ)
(∵sin2 θ + cos2 θ = 1)
= [{(sin2 θ + cos2 θ)2 – 2 sin2 θ cos2 θ) – sin2 θ cos2 θ]
(∵(a2 + b2 ) = (a + b)2 – 2ab) )
= [1 – 2 sin2 θ cos2 θ – sin2 θ cos2 θ]
= 1 – 3 sin2 θ cos2 θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
sin2 θ + cos4θ = cos2 θ + sin4 θ
Consider L.H.S. = sin2 θ + cos4 θ
= (sin2 θ) + (cos2 θ)2
= (sin2 θ) + (1 – sin2 θ)2
= (sin2 θ) + 1 + sin4 θ – 2sin2 θ
= 1 – sin2 θ + sin4 θ
= cos2 θ + sin4 θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
cosec4 θ – cosec2 θ = cot4 θ + cot2 θ
Consider L.H.S. = cosec4 θ – cosec2 θ
= (cosec2 θ)2 – (cosec2 θ)
= (1 + cot2 θ)2 – (cosec2 θ)
= 1 + cot4 θ + 2cot2 θ – (cosec2 θ)
= 1 + cot4 θ + cot2 θ – (cosec2 θ – cot2 θ)
= 1 + cot4 θ + cot2 θ – 1
= cot4 θ + cot2 θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
=
=
=
= cos2 θ – sin2 θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
=
=
=
= sin2 θ/ cos2 θ
= tan2 θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. = +
=
=
=
=
= [2 (1/cos θ)]/[sin θ /cos θ]
= [2/sin θ]
= 2 cosec θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. = +
=
=
=
=
=
= 2 cosec θ/cot θ
= 2 (1/sin θ)/(cos θ/sin θ)
= 2/ cos θ
= 2 sec θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
Multiply and divide by (sec θ + 1):
=
=
=
=
=
=
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
Multiply and divide by (sec θ + tan θ):
=
=
=
=
=
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
Multiply and divide by (1 + sin θ):
=
=
=
= (1 + sin θ)/cos θ
= (1/cos θ) + (sin θ/cos θ)
= sec θ + tan θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
Multiply and divide by (1 – cos θ):
=
=
=
= (1 – cos θ)/sin θ
= (1/sin θ) – (cos θ/sin θ)
= cosec θ – cot θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
Multiply and divide by (1 + cos θ) in first part and (1 – cos θ) in the second part:
=
=
=
= [(1 + cos θ)/sin θ] + [(1 – cos θ)/sin θ]
= [(1/sin θ) + (cos θ/sin θ)] + [(1/sin θ) – (cos θ/sin θ)]
= [cosec θ + cot θ] + [cosec θ – cot θ]
= 2 cosec θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
Using identities (a3 + b3) = (a + b)(a2 + b2 – ab) and (a3 – b3) = (a – b)(a2 + b2 + ab)
∴ L.H.S. =
= (cos2 θ + sin2 θ – cos θ sin θ) + (cos2 θ + sin2 θ + cos θ sin θ)
= (1 – cos θ sin θ) + (1 + cos θ sin θ)
= 2
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
=
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
=
=
=
=
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
=
=
=
=
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
=
=
=
= cos θ/sin θ
= cot θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
Multiply and divide by (cosec θ + cot θ):
=
=
= (cosec θ + cot θ)2
Thus, proved.
Also, consider (cosec θ + cot θ)2 = cosec2 θ + cot2 θ+ 2 cosec θ cot θ
= 1 + cot2 θ + cot2 θ+ 2 cosec θ cot θ (∵ 1 + cot2 θ = cosec2 θ)
= (1 + 2 cot2 θ + 2 cosec θ cot θ)
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
Multiply and divide by (sec θ + tan θ):
=
=
= (sec θ + tan θ)2
Thus, proved.
Also, consider (sec θ + tan θ)2 = sec2 θ + tan2 θ+ 2 sec θ tan θ
= 1 + tan2 θ + tan2 θ+ 2 sec θ tan θ (∵ 1 + tan2 θ = sec2 θ)
= (1 + 2 tan2 θ + 2 sec θ tan θ)
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
Multiply and divide by ((1 + cos θ) + sin θ):
=
=
=
=
=
=
=
= R.H.S.
Thus, proved.
Prove each of the following identities:
Consider L.H.S. =
Multiply and divide by (cos θ + 1) + sin θ):
=
=
=
=
=
= R.H.S.
Thus, proved.
Prove each of the following identities:
Consider L.H.S. =
=
=
= sin θ cos θ ×
= sin θ cos θ ×
= sin θ cos θ ×
= sin θ cos θ ×
= sin θ cos θ ×
= sin θ cos θ/ sin θ cos θ
= 1
= R.H.S.
Prove each of the following identities:
Consider L.H.S. =
=
=
=
Thus, prove.
Also, consider =
=
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. =
=
=
=
=
= (1/sin θ) – (1/cos θ)
= cosec θ – sec θ
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. = (1 + tan θ + cot θ)(sin θ – cos θ)
= sin θ – cos θ + tan θ sin θ – tan θ cos θ + cot θ sin θ – cot θ cos θ
= sin θ – cos θ + tan θ sin θ – sin θ + cos θ – cot θ cos θ
= tan θ sin θ – cot θ cos θ
Hence, proved.
Prove each of the following identities:
Consider L.H.S. = +
= +
= +
= +
= +
= –
= 0
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider L.H.S. = (sin2 θ cos2 θ)
= (sin2 θ cos2 θ)
= (sin2 θ cos2 θ)
= (sin2 θ cos2 θ)
= (sin2 θ cos2 θ)
= (sin2 θ cos2 θ)
=
=
=
=
= R.H.S.
Prove each of the following identities:
Consider the left – hand side =
=
=
=
=
= 0
= R.H.S.
Hence, proved.
Prove each of the following identities:
Consider the L.H.S. =
=
=
=
= tan A tan B
= R.H.S.
Hence, proved.
Show that none of the following is an identity:
cos2 θ + cos θ = 1
If the given equation is an identity, then it is true for every value of θ.
So, let θ = 60°
So, for θ = 60°, consider the L.H.S. = cos2 60° + cos 60°
= (1/2)2 + (1/2)
= (1/4) + (1/2)
= 3/4 ≠ 1
Therefore, L.H.S. ≠ R.H.S.
Thus, the given equation is not an identity.
Show that none of the following is an identity:
sin2 θ + sin θ = 2
If the given equation is an identity, then it is true for every value of θ.
So, let θ = 30°
So, for θ = 30°, consider the L.H.S. = sin2 30° + sin 30°
= (1/2)2 + (1/2)
= (1/4) + (1/2)
= 3/4 ≠ 2
Therefore, L.H.S. ≠ R.H.S.
Thus, the given equation is not an identity.
Show that none of the following is an identity:
tan2 θ + sin θ = cos2 θ
If the given equation is an identity, then it is true for every value of θ.
So, let θ = 30°
So, for θ = 30°, consider the L.H.S. = tan2 30° + sin 30°
= (1/√3)2 + (1/2)
= (1/3) + (1/2)
= 5/6
Consider the R.H.S. = cos2 30° = (√3/2)2
= 3/4
Therefore, L.H.S. ≠ R.H.S.
Thus, the given equation is not an identity.
Prove that: (sin θ – 2 sin3 θ) = (2cos3 θ – cos θ) tan θ.
Consider R.H.S. = (2cos3 θ – cos θ) tan θ
= cos θ(2cos2 θ – 1)
= (2cos2 θ – 1)sin θ
Consider L.H.S. = (sin θ – 2 sin3 θ)
= sin θ(1 – 2 sin2 θ)
= sin θ[1 – 2(1 – cos2 θ)]
= sin θ [1 – 2 + 2cos2 θ]
= sin θ (2cos2 θ – 1)
Therefore, L.H.S. = R.H.S.
Hence, proved.
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that (m2+ n2) = (a2 + b2).
Given: a cos θ + b sin θ = m …….(1)
a sin θ – b cos θ = n …….(2)
Square equation (1) and (2) on both sides:
a2 cos2 θ + b2 sin2 θ + 2ab cos θ sin θ = m2 …….(3)
a2 sin2 θ + b2 cos2 θ – 2ab cos θ sin θ = n2 ……..(4)
Add equation (3) and (4):
[a2 cos2 θ + b2 sin2 θ + 2ab cos θ sin θ] + [a2 sin2 θ + b2 cos2 θ – 2ab cos θ sin θ] = m2 +n2
⇒ a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ) = m2 +n2
⇒ a2 + b2 = m2 + n2
Hence, proved.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that
(x2 – y2) = (a2 – b2)
Given: a sec θ + b tan θ = x …….(1)
a tan θ + b sec θ = y …….(2)
Square equation (1) and (2) on both sides:
a2 sec2 θ + b2 tan2 θ + 2ab sec θ tan θ = x2 …….(3)
a2 tan2 θ + b2 sec2 θ + 2ab sec θ tan θ = y2 ……..(4)
Subtract equation (4) from (3):
[a2 sec2 θ + b2 tan2 θ + 2ab sec θ tan θ] – [a2 tan2 θ + b2 sec2 θ + 2ab sec θ tan θ] = x2 – y2
⇒ a2 (sec2 θ – tan2 θ) + b2 (tan2 θ – sec2 θ) = x2 – y2
⇒ a2 – b2 = x2 – y2 (∵sec2 θ = 1 + tan2 θ)
Hence, proved.
If prove that
Given: sin θ – cos θ = 1 …….(1)
cos θ + sin θ = 1 …….(2)
Square equation (1) and (2) on both sides:
sin2 θ + cos2 θ – 2 cos θ sin θ = 1 …….(3)
cos2 θ + sin2 θ + 2 cos θ sin θ = 1 ……..(4)
Add equation (3) and (4):
(sin2 θ + cos2 θ) + (sin2 θ + cos2 θ) = 1+1
⇒ (1) + (1) = 2
⇒ + = 2
Hence, proved.
If (sec θ + tan θ) = m and (sec θ – tan θ) = n, show that mn = 1.
Given: (sec θ + tan θ) = m …………….(1)
(sec θ – tan θ) = n …………….(2)
Multiply equation (1) and (2):
(sec θ + tan θ) (sec θ – tan θ) = mn
(sec2 θ – tan2 θ) = mn
1 = mn (∵ 1 + tan2 θ = sec2 θ)
Therefore, mn = 1.
Hence, proved.
If (cosec θ + cot θ) = m and (cosec θ – cot θ) = n, show that mn = 1
Given: (cosec θ + cot θ) = m …………….(1)
(cosec θ – cot θ) = n …………….(2)
Multiply equation (1) and (2):
(cosec θ + cot θ) (cosec θ – cot θ) = mn
(cosec2 θ – cot2 θ) = mn
1 = mn (∵ 1 + cot2 θ = cosec2 θ)
Therefore, mn = 1.
Hence, proved.
If x = a cos3 θ and y = b sin3 θ, prove that
Given: x = a cos3 θ
y = b sin3 θ
Consider L.H.S. =
=
= (cos3 θ)2/3 + (sin3 θ)2/3
= (cos2 θ + (sin2 θ)
= 1 = R.H.S.
Hence, proved.
If (tan θ + sin θ) = m and (tan θ – sin θ) = n, prove that (m2 – n2)2 = 16mn.
Given: tan θ + sin θ = m …….(1)
tan θ – sin θ = n …….(2)
Square equation (1) and (2) on both sides:
tan2 θ + sin2 θ + 2 sin θ tan θ = m2 …….(3)
tan2 θ + sin2 θ – 2 sin θ tan θ = n2 ……..(4)
Subtract equation (4) from (3):
[tan2 θ + sin2 θ + 2 sin θ tan θ] – [tan2 θ + sin2 θ – 2 sin θ tan θ] = m2 – n2
⇒ 4sin θ tan θ = m2 – n2
Square both sides:
⇒ 16 sin2 θ tan2 θ = (m2 – n2)2
Therefore, (m2 – n2)2 = 16 sin2 θ tan2 θ
Also, 16mn = 16 × (tan θ + sin θ) × (tan θ – sin θ)
= 16 (tan2 θ – sin2 θ)
= 16[(sin2 θ/ cos2 θ) – sin2 θ]
= 16[sin2 θ ]
= 16 sin2 θ(sin2 θ/ cos2 θ)
= 16 sin2 θ tan2 θ
Therefore, (m2 – n2)2 = 16mn
Hence, proved.
If (cot θ + tan θ) = m and (sec θ – cos θ) = n, prove that (m2n) 2/3 – (mn2) 2/3 = 1.
Given: (cot θ + tan θ) = m
(sec θ – cos θ) = n
Since, m = cot θ + tan θ
= (1/tan θ) + tan θ
=
= sec2 θ/tan θ
= 1/(sin θ cos θ)
Also, n = sec θ – cos θ
= (1/cos θ) – cos θ
= (1 – cos2 θ)/cos θ
= sin2 θ/cos θ
Now, consider the left – hand side:
(m2n) 2/3 – (mn2) 2/3 =
=
=
=
= (1 – sin2 θ)cos2 θ
= cos2 θ/ cos2 θ
= 1
If (cosec θ – sin θ) = a3 and (sec θ – cos θ) = b3, prove that a2 b2 (a2 + b2) = 1.
Given: (cosec θ – sin θ) = a3
(sec θ – cos θ) = b3
Since, a3 = (cosec θ – sin θ)
= (1/sin θ) – sin θ
=
= cos2 θ/sin θ
Therefore, a2 = (a3)2/3 = (cos2 θ/sin θ)2/3
Also, b3 = sec θ – cos θ
= (1/cos θ) – cos θ
= (1 – cos2 θ)/cos θ
= sin2 θ/cos θ
Therefore, b2 = (b3)2/3 = (sin2 θ/cos θ)2/3
Now, consider the left – hand side:
a2 b2 (a2 + b2) =
=
=
= sin2 θ + cos2 θ
= 1 = R.H.S.
Hence, proved.
If (2 sin θ + 3 cos θ) = 2, prove that (3 sin θ – 2 cos θ) = ± 3.
Given: 2 sin θ + 3 cos θ = 2
Consider (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 4sin2 θ + 9 cos2 θ + 12sin θ cos θ + 9 sin2 θ + 4 cos2 θ – 12 sin θ cos θ
⇒ (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 13sin2 θ + 13 cos2 θ
⇒ (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 13(sin2 θ + cos2 θ)
⇒ (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 13
⇒ (2)2 + (3 sin θ – 2 cos θ)2 = 13
⇒ (3 sin θ – 2 cos θ)2 = 13 – 4
⇒ (3 sin θ – 2 cos θ)2 = 9
⇒ (3 sin θ – 2 cos θ) = ± 3
Hence, proved.
If (sin θ + cos θ) = √2 cos θ, show that cot θ = (√2 + 1).
Given: (sin θ + cos θ) = √2 cos θ
To show: cot θ = (√2 + 1)
Solution:
(sin θ + cos θ) = √2 cos θ
Divide both sides by sin θ,
Since
⇒ 1 + cot θ = √2 cot θ
⇒ (√2 – 1)cot θ = 1
⇒ cot θ =
⇒ cot θ =
⇒ cot θ =
⇒ cot θ = √2 + 1
If (cos θ + sin θ) = √2sin θ, prove that (sin θ – cos θ) = √2cos θ.
Given: cos θ + sin θ = √2sin θ
Consider (sin θ + cos θ)2 + (sin θ – cos θ)2 = sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ –
2 sin θ cos θ
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2sin2 θ + 2 cos2 θ
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2(sin2 θ + cos2 θ)
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2
⇒ (√2sin θ)2 + (sin θ – cos θ)2 = 2
⇒ (sin θ – cos θ)2 = 2 – 2sin2 θ
⇒ (sin θ – cos θ)2 = 2(1 – sin2 θ)
⇒ (sin θ – cos θ)2 = 2(cos2 θ)
⇒ (sin θ – cos θ) = ± √2 cos θ
Hence, proved.
If sec θ + tan θ = p, prove that
(i)
(ii)
(iii)
(i) Given: sec θ + tan θ = p ……(1)
Then, (sec θ + tan θ) × = p
⇒ = p
⇒ = p
⇒ sec θ – tan θ = (1/p) ……(2)
Adding equation (1) and (2), we get:
2 sec θ = p + (1/p)
⇒ sec θ =
Therefore, sec θ =
(ii) Given: sec θ + tan θ = p ……(1)
Then, (sec θ + tan θ) × = p
⇒ = p
⇒ = p
⇒ sec θ – tan θ = (1/p) ……(2)
Subtracting equation (2) from (1), we get:
2tan θ = p – (1/p)
⇒ tan θ =
(iii) Since sin θ = tan θ/sec θ
=
=
=
If tan A = n tan B and sin A = m sin B, prove that .
Given: tan A = n tan B
Therefore,
Thus,
Squaring both sides, we get,
⇒ cot2 B = n2/tan2 A ……(1)
Also, sin A = m sin B
Therefore, sin B = sin A/m
Thus, cosec B = m/sin A
⇒ cosec2 B = m2/sin2 A ……(2)
Now, subtract equation (2) from (1):
cosec2 B – cot2 B =
⇒ 1 =
⇒ 1 =
⇒ m2 – n2 cos2 A = sin2 A
⇒ m2 – n2 cos2 A = 1 – cos2 A
⇒ m2 – 1 = n2 cos2 A – cos2 A
⇒ (n2 – 1)cos2 A = m2 – 1
⇒ cos2 A = (m2 – 1)/(n2 – 1)
Hence, proved.
If m = (cos θ – sin θ) and n = (cos θ + sin θ) then show that
Given: m = (cos θ – sin θ)
n = (cos θ + sin θ)
Now, =
Multiply numerator and denominator by cos θ – sin θ :
Therefore, =
=
Now, =
Multiply numerator and denominator by cos θ + sin θ :
Therefore, =
=
Now, consider =
=
=
=
Divide numerator and denominator by cos θ:
=
=
Therefore, =
Hence, proved.
Write the value of (1 – sin2θ) sec2 θ.
Consider (1 – sin2θ) sec2 θ = (cos2 θ) × sec2 θ
(∵ sin2 θ + cos2 θ = 1)
= 1
Write the value of (1 – cos2θ) cosec2 θ.
Consider (1 – cos2θ) cosec2 θ = (sin2 θ) × cosec2 θ
(∵ sin2 θ + cos2 θ = 1)
= 1
Write the value of (1 + tan2θ) cos2 θ.
Consider (1 + tan2θ) cos2 θ = (sec2 θ) × cos2 θ
(∵ 1 + tan2 θ = sec2 θ)
= 1
Write the value of (1 + cot2θ) sin2 θ.
Consider (1 + cot2θ) × sin2 θ = (cosec2 θ) × sin2 θ
(∵ 1 + cot2 θ = cosec2 θ)
= 1
Write the value of
Consider sin2 θ +
= (sin2θ) + (1/sec2 θ)
(∵ 1 + tan2 θ = sec2 θ)
= (sin2θ) + (cos2θ)
(∵ sin2 θ + cos2 θ = 1)
= 1
Write the value of .
Consider cot2 θ –
= (cot2 θ) – (cosec2 θ)
= – (cosec2 θ – cot2 θ)
(∵ 1 + cot2 θ = cosec2 θ)
= – 1
Write the value of sin θ cos (90° – θ) + cos θ sin (90° – θ).
Consider sin θ cos (90° – θ) + cos θ sin (90° – θ) = sin θ sin θ + cos θ cos θ
= sin2 θ + cos2 θ
(∵ sin2 θ + cos2 θ = 1)
= 1
Write the value of cosec2 (90° – θ) – tan2 θ.
Consider cosec2 (90° – θ) – tan2 θ = sec2 θ – tan2 θ
(∵ 1 + tan2 θ = sec2 θ)
= 1
Write the value of sec2 θ (1 + sin θ)(1 – sin θ).
Consider sec2 θ (1 + sin θ)(1 – sin θ) = sec2 θ (1 – sin2 θ)
= sec2 θ cos2 θ
(∵ sin2 θ + cos2 θ = 1)
= 1
Write the value of cosec2 θ (1 + cos θ)(1 – cos θ).
Consider cosec2 θ (1 + cos θ)(1 – cos θ) = cosec2 θ (1 – cos2 θ)
= cosec2 θ sin2 θ
(∵ sin2 θ + cos2 θ = 1)
= 1
Write the value of sin2 θ cos2 θ (1 + tan2 θ)(1 + cot2 θ).
Consider sin2 θ cos2 θ (1 + tan2 θ)(1 + cot2 θ)
= sin2 θ cos2 θ (sec2 θ)(cosec2 θ) (∵ 1 + cot2 θ = cosec2 θ and 1 + tan2 θ = sec2 θ)
= sin2 θ (cosec2 θ) cos2 θ (sec2 θ)
= 1 × 1
= 1
Write the value of (1 + tan2 θ)(1 + sin θ)(1 – sin θ).
Consider (1 + tan2 θ)(1 + sin θ)(1 – sin θ)
= (1 + tan2 θ)(1 – sin2 θ) (∵ sin2 θ + cos2 θ = 1 and 1 + tan2 θ = sec2 θ)
= (sec2 θ) (cos2 θ)
= 1
Write the value of 3 cot2 θ – 3 cosec2 θ.
Consider 3 cot2 θ – 3 cosec2 θ = – 3(cosec2 θ – cot2 θ)
= – 3(1) (∵ 1 + cot2 θ = cosec2 θ)
= – 3
Write the value of .
Consider 4 tan2 θ – = 4 tan2 θ – 4 sec2 θ
= 4(tan2 θ – sec2 θ)
= 4( – 1) (∵1 + tan2 θ = sec2 θ)
= – 4
Write the value of
Consider = (∵1 + tan2 θ = sec2 θ and 1 + cot2 θ = cosec2 θ)
= 1
If sin θ = 1/2, write the value of (3 cot2 θ + 3).
Give: sin θ = 1/2
Therefore cosec θ = 1/sin θ
= 2
Consider 3 cot2 θ + 3 = 3 (cot2 θ + 1)
= 3 cosec2 θ (∵ 1 + cot2 θ = cosec2 θ)
= 3 (2)2
= 3 × 4
= 12
If cos θ = 2/3, write the value of (4 +4 tan2 θ).
Give: cos θ = 2/3
Therefore sec θ = 1/cos θ
= 3/2
Consider 4 tan2 θ + 4 = 4 (tan2 θ + 1)
= 4 sec2 θ (∵ 1 + tan2 θ = sec2 θ)
= 4 (3/2)2
= 4 × (9/4)
= 9
If cos θ = 7/25, write the value of (tan θ + cot θ).
Given: cos θ = 7/25
Therefore sin θ = √(1 – cos2 θ)
= √(1 –(49/625))
= √[(625 – 49)/625]
= √(576/625)
= 24/25
Thus, tan θ = sin θ/cos θ = (24/25)/(7/25)
= 24/7
Also, cot θ = 1/tan θ = 7/24
Therefore, tan θ + cot /θ = (24/7) + (7/24)
= (576 + 49)/(24 × 7)
= 625/168
If cos θ = 2/3, write the value of .
Given: cos θ = 2/3
Thus, sec θ = 1/cos θ
= 3/2
Now, consider =
= [(1/2)/(5/2)]
= 1/5
If 5 tan θ = 4, write the value of .
Given: 5 tan θ = 4
Therefore, tan θ = 4/5
Now, consider and divide numerator and denominator by cos θ:
=
=
=
= (1/5)/(9/5)
= 1/9
If 3 cot θ = 4, write the value of .
Given: 3 cot θ = 4
Therefore, cot θ = 4/3
Therefore, tan θ = 3/4
Now, consider and divide numerator and denominator by cos θ:
=
=
=
= (11/4)/(13/4)
= 11/13
If cot θ = 1/√3 write the value of
Given: cot θ = 1/√3
Thus, tan θ = 1/cot θ = √3
Therefore sec θ = √(1 + tan2 θ)
= √(1 + 3)
= √(4)
= 2
Therefore sec2 θ = 4
Now, cos2 θ = 1/sec2 θ = 1/4
So, consider =
=
=
= (3/4)/(5/4)
= 3/5
If tan θ = 1/√5write the value of
Given: tan θ = 1/√5
∴ tan2 θ = 1/5
Consider =
Multiply numerator and denominator by sin θ:
=
=
= 4/6
= 2/3
If cot A = 4/3 and (A + B) = 90°, what is the value of tan B?
We are given that: cot A = 4/3
⇒ tan (90° – A) = 4/3
Since A + B = 90°, therefore B = 90° – A
Therefore, tan (90° – A) = tan B = 4/3
If cos B = 3/5 and (A + B) = 90°, find the value of sin A.
We are given that: cos B = 3/5
⇒ sin (90° – B) = 3/5
Since A + B = 90°, therefore A = 90° – B
Therefore, sin (90° – B) = sin A = 3/5
If √3sin θ = cos θ and θ is an acute angle, find the value of θ.
We are given that: √3sin θ = cos θ
∴sin θ /cos θ = 1/√3
⇒ tan θ = 1/√3
⇒ tan θ = tan 30°
On comparing both sides, we get,
θ = 30°
Write the value of tan 10° tan 20° tan 70° tan 80°.
Consider tan 10° tan 20° tan 70° tan 80°
= tan 10° tan 20° tan (90° – 20°) tan (90° – 10°)
= tan 10° tan 20° cot 0° cot 10°
= tan 10° cot 10° tan 20° cot 20°
= 1 × 1
= 1
Write the value of tan 1° tan 2° ... tan 89°.
Consider tan 1° tan 2°… tan 88° tan 89°
= tan 1° tan 2°… tan 44° tan 45° tan 46° …tan 88° tan 89°
= tan 1° tan 2°…tan 44° tan 45° tan (90° – 44° ) …tan (90° – 2°) tan (90° – 1°)
= tan 1° tan 2° … tan 44 ° tan 45° cot 44° …cot 2° cot 1°
= tan 1° cot 1° tan 2° cot 2°… tan 44 ° cot 44 ° tan 45°
= 1 × 1 × ...× 1
= 1
Write the value of cos 1° cos 2° ... cos 180°.
Consider cos 1° cos 2° cos 3° ... cos 180°
= cos 1° cos 2° cos 3° …× cos 90° × … × cos 180°
= cos 1° cos 2° cos 3° ... × 0 × … × cos 180°
= 0 (∵ cos 90° = 0)
If tan A = 5/12, find the value of (sin A + cos A) sec A.
Given: tan A = 5/12
Consider (sin A + cos A) sec A = (sin A + cos A)(1/cos A)
= (sin A/cos A) + (cos A/cos A)
= tan A + 1
= (5/12) + 1
= 17/12
If sin θ = cos (θ – 45°), where θ is acute, find the value of θ.
We are given that: sin θ = cos (θ – 45°)
∴We can rewrite it as: cos (90° – θ ) = cos (θ – 45°)
On comparing both sides, we get,
90° – θ = θ – 45°
⇒ θ + θ = 90° + 45°
⇒ 2θ = 135°
⇒ θ = 65.5°
Find the value of .
Consider – 4 cos 50° cosec 40°
= – 4 cos 50° cosec (90° – 40°)
= – 4 cos 50° sec 50°
= 1 + 1 – 4
= – 2
Find the value of sin 48° sec 42° + cos 48° cosec 42°.
Consider sin 48° sec 42° + cos 48° cosec 42°
= sin 48° sec (90° – 48°) + cos 48° cosec (90° – 48°)
= sin 48° cosec 48° + cos 48° sec 48°
= 1 + 1
= 2
If x = a sin θ and y = b cos θ, write the value of (b2x2 + a2y2).
Given: x = a sin θ
y = b cos θ
Then b2x2 + a2y2 = b2(a sin θ)2 + a2(b cos θ)2
= a2b2 sin2 θ + a2 b2 cos2 θ
= a2b2 (sin2 θ + cos2 θ)
= (a2b2) × 1
= a2b2
If 5x = sec θ and 5/x = tan θ, find the value of 5
Given: 5x = sec θ, and 5/x = tan θ
Consider 5(x2 – (1/ x2))
=
=
= (1/5) [sec2 θ – tan2 θ]
= (1/5)[1]
= 1/5 (∵ sec2 x – tan2 x = 1)
If cosec θ = 2x and cot θ = 2/x find the value of 2.
Given: 2x = cosec θ , and 2/x = cot θ
Consider 2(x2 – (1/ x2)) =
=
= (1/2)(cosec2 θ – cot2 θ)
= 1/2 (∵ cosec2 x – cot2 x = 1)
If sec θ + tan θ = x, find the value of sec θ.
Given: sec θ + tan θ = x ……(1)
Then, (sec θ + tan θ) × = x
⇒ = x
⇒ = x
⇒ sec θ – tan θ = (1/x) ……(2)
Adding equation (1) and (2), we get:
2 sec θ = x + (1/x)
= (x2 + 1)/x
⇒ sec θ = (x2 + 1)/2x
Therefore, sec θ = (x2 + 1)/2x
Find the value of .
Consider
=
=
=
=
= cot 60°
= 1/√3
If sin θ = x, write the value of cot θ.
Given: sin θ = x
Therefore, cosec θ = 1/x
Using the identity 1 + cot2 θ = cosec2 θ, we get
cot θ = √(cosec2 θ – 1)
= √((1/x)2 – 1)
=
=
If sec θ = x, write the value of tan θ.
Given: sec θ = x
Using the identity 1 + tan2 θ = sec2 θ, we get
tan θ = √(sec2 θ – 1)
= √(x2 – 1)
Choose the correct answer:
A. 2/√3
B. √3/2
C. √3
D. 1
sec 30° = 1/cos 30°
= 1/(√3/2)
= 2/√3
cosec 60° = 1/sin 60°
= 1/(√3/2)
= 2/√3
Therefore, sec 30° /cosec 30° = (2/√3)/(2/√3)
= 1
Choose the correct answer:
A. 0
B. 1
C. 2
D. none of these
=
=
= 1 + 1
= 2
Choose the correct answer:
tan 10° tan 15° tan 75° tan 80° = ?
A. √3
B. 1/√3
C. – 1
D. 1
Consider tan 10° tan 15° tan 75° tan 80°
= tan 10° tan 80° tan 15° tan 75°
= tan 10° tan (90 – 10)° tan 15° tan (90 – 15)°
= (tan 10° cot 10°) (tan 15° cot 15°)
= (1) × (1) = 1
Choose the correct answer:
tan 5° tan 25° tan 30° tan 65° tan 85° = ?
A. √3
B. 1/√3
C. 1
D. none of these
Consider tan 5° tan 25° tan 30° tan 65° tan 85°
= tan 5° tan 85° tan 25° tan 65° tan 30°
= tan 5° tan (90 – 5)° tan 25° tan (90 – 25)° tan 30°
= (tan 5° cot 5°) (tan 25° cot 25°) tan 30°
= (1) × (1) × (1/√3)
= 1/√3
Choose the correct answer:
cos 1° cos 2° cos 3° ... cos 180° = ?
A. – 1
B. 1
C. 0
D. 1/2
Consider cos 1° cos 2° cos 3° ... cos 180°
= cos 1° cos 2° cos 3° …× cos 90° × … cos 180°
= cos 1° cos 2° cos 3° ... × 0 × cos 180°
= 0 (∵ cos 90° = 0)
Choose the correct answer:
A. 3/2
B. 2/3
C. 2
D. 3
Consider =
=
=
= (2 + 1)/(3 – 1)
= 3
Choose the correct answer:
sin 47° cos 43° + cos 47° sin 43° = ?
A. sin 4°
B. cos 4°
C. 1
D. 0
Consider (sin 47° cos 43°) + (cos 47° sin 43°)
= (sin 47° cos (90 – 47)°) + (cos 47° sin (90 – 47)°)
= sin2 47° + cos2 47°
= 1
Choose the correct answer:
sec 70° sin 20° + cos 20° cosec 70° = ?
A. 0
B. 1
C. – 1
D. 2
Consider (sec 70° sin 20°) + (cos 20° cosec 70°)
= (sec (90 – 20)° sin 20°) + (cos 20° cosec (90 – 20)°)
= (cosec 70° sin70°) + (cos 20° sec 20°)
= 1 + 1 (∵ cosec θ = 1/sin θ and sec θ = 1/cos θ )
= 2
Choose the correct answer:
If sin 3A = cos (A – 10°) and ∠A is acute then ∠A = ?
A. 35°
B. 25°
C. 20°
D. 45°
We are given that: sin 3A = cos (A – 10°)
∴ We can rewrite it as: cos (90° – 3A) = cos (A – 10°)
On comparing both sides, we get,
90° – 3A = A – 10°
⇒ A + 3A = 90° + 10°
⇒ 4A = 100°
⇒ A = 25°
Choose the correct answer:
If sec 4A = cosec (A – 10°) and 4A is acute then ∠A = ?
A. 20°
B. 30°
C. 40°
D. 50°
We are given that: sec 4A = cosec (A – 10°)
∴We can rewrite it as: cosec (90° – 4A) = cosec (A – 10°)
On comparing both sides, we get,
90° – 4A = A – 10 °
⇒ A + 4A = 90° + 10°
⇒ 5A = 100°
⇒ A = 20°
Choose the correct answer:
If A and B are acute angles such that sin A = cos B then (A + B) = ?
A. 45°
B. 60°
C. 90°
D. 180°
We are given that: sin A = cos B
∴We can rewrite it as: sin A = sin(90° – B)
On comparing both sides, we get,
90° – B = A
⇒ A + B = 90°
Choose the correct answer:
If cos (α + β) = 0 then sin (α – β) = ?
A. sinα
B. cosβ
C. sin 2α
D. cos 2β
We are given that: cos (α + β) = 0
∴We can rewrite it as: cos (α + β) = cos (90° – 0°)
On comparing both sides, we get,
(α + β) = 0 = 90°
⇒ α = 90° – β
Therefore, sin (α – β) = sin (90° – β – β)
= sin (90° – 2β)
= cos 2β
Choose the correct answer:
sin (45° + θ) – cos (45° – θ) = ?
A. 2 sin θ
B. 2 cos θ
C. 0
D. 1
Consider sin (45° + θ) – cos (45° – θ) = sin (45° + θ) – sin (90° – (45° – θ))
= sin (45° + θ) – sin (45° + θ)
= 0
Choose the correct answer:
sec2 10° – cot2 80° = ?
A. 1
B. 0
C. 3/2
D. 1/2
sec2 10° – cot2 80° = sec2 10° – tan2 (90° – 80°)
= sec2 10° – tan2 10°
= 1
Choose the correct answer:
cosec2 57° – tan2 33° = ?
A. 0
B. 1
C. – 1
D. 2
cosec2 57° – tan2 33° = cosec2 57° – cot2 (90° – 33°)
= cosec2 57° – cot2 57°
= 1
Choose the correct answer:
A. 2
B. 1/2
C. 2/3
D. 3/2
Consider =
=
= (2tan2 30° × 1)/1
= 2tan2 30°
= 2(1/√3)2
= 2/3
Choose the correct answer:
A. 0
B. 1
C. 2
D. 3
Consider + sin2 63° + cos 63°sin 27°
= + sin2 63° + cos 63° sin (90° – 63°)
= + sin2 63° + cos 63° cos 63°
= (1/1) + (sin2 63° + cos2 63°)
= 1 + 1
= 2
Choose the correct answer:
A. 0
B. 1
C. – 1
D. none of these
Consider – (cos2 20° + cos2 70°)
= – (cos2 20° + cos2 (90° – 70°))
= (tan θ × cot θ) + (tan 50°/tan 50°) – (cos2 20° + sin2 20°)
= 1 + 1 – 1
= 1
Choose the correct answer:
A. √3
B. 1/3
C. 1/√3
D. 2/√3
Consider
=
=
=
= 1/√3
Choose the correct answer:
If 2 sin 2θ = √3 then θ = ?
A. 30°
B. 45°
C. 60o
D. 90o
Given: 2 sin 2θ = √3
Therefore, sin 2θ = √3/2
⇒ sin 2θ = sin 60°
On comparing both sides, we get:
2θ = 60°
⇒ θ = 60°/2
⇒ θ = 30°
Choose the correct answer:
If 2 cos 3θ = 1 then θ = ?
A. 10°
B. 15°
C. 20°
D. 30°
Given: 2 cos 3θ = 1
Therefore, cos 3θ = 1/2
⇒ cos 3θ = cos 60°
On comparing both sides, we get:
3θ = 60°
⇒ θ = 60°/3
⇒ θ = 20°
Choose the correct answer:
If √3tan 2θ – 3 = 0 then θ = ?
A. 15°
B. 30°
C. 45°
D. 60°
Given√3tan 2θ – 3 = 0
Therefore, √3tan 2θ = 3
⇒ tan 2θ = 3/√3
⇒ tan 2θ = √3
⇒ tan 2θ = tan 60°
On comparing both sides, we get:
2θ = 60°
⇒ θ = 60°/2
⇒ θ = 30°
Choose the correct answer:
If tan x = 3 cot x then x = ?
A. 45°
B. 60°
C. 30°
D. 15°
Given: tan x = 3 cot x
⇒ tan x/cot x = 3
Since, cot x = 1/tan x
Therefore, tan x/cot x = 3 ⇒ tan2 x = 3
Taking square root on both sides:
⇒ tan x = √3
⇒ tan x = tan 60°
Comparing both sides:
⇒ x = 60°
Choose the correct answer:
If x tan 45° cos 60° = sin 60° cot 60° then x = ?
A. 1
B. 1/2
C. 1/√2
D.√3
Given: x tan 45° cos 60° = sin 60° cot 60°
⇒ x × 1 × (1/2) = (√3/2) × (1/√3)
⇒ x/2 = 1/2
⇒ x = 1
Choose the correct answer:
If tan245° – cos230° = x sin 45° cos 45° then x = ?
A. 2
B. – 2
C. 1/2
D. – 1/2
Given: tan245° – cos230° = x sin 45° cos 45°
⇒ (1)2 – (√3/2)2 = x × (1/√2) × (1/√2)
⇒ 1 – (3/4) = x × (1/2)
⇒ x/2 = 1 –(3/4)
⇒ x/2 = 1/4
⇒ x = 2/4
⇒ x = 1/2
Choose the correct answer:
sec260° – 1 = ?
A. 2
B. 3
C. 4
D. 0
sec2 60° – 1 = (1/cos2 60°) – 1
= [1/(1/2)2] – 1
= [1/(1/4)] – 1
= 4 – 1
= 3
Choose the correct answer:
(cos 0° + sin 30° + sin 45°) (sin 90° + cos 60° – cos 45°) = ?
A. 5/6
B. 5/8
C. 3/5
D. 7/4
Consider (cos 0° + sin 30° + sin 45°) (sin 90° + cos 60° – cos 45°)
= [1 + (1/2) + (1/√2)] × [1 + (1/2) – (1/√2)]
= [(3/2) + (1/√2)] × [(3/2) – (1/√2)]
= (3/2)2 – (1/√2)2
= (9/4) – (1/2)
= (9 – 2)/4
= 7/4
Choose the correct answer:
sin2 30° + 4 cot2 45° – sec2 60° = ?
A. 0
B. 1/4
C. 4
D. 1
Consider sin2 30° + 4 cot2 45° – sec2 60° = (1/2)2 + 4(1)2 – (2)2
= (1/4) + 4 – 4
= 1/4
Choose the correct answer:
3 cos260° + 2 cot230° – 5 sin245° = ?
A. 13/6
B. 17/4
C. 1
D.4
Consider 3 cos260° + 2 cot230° – 5 sin245° = 3 (1/2)2 + 2(√3)2 – 5(1/√2)2
= 3(1/4) + 2(3) – 5(1/2)
= (3/4) + 6 – (5/2)
= (3 + 24 – 10)/4
= 17/4
Choose the correct answer:
cos2 30° cos2 45° + 4 sec2 60° + 2cos2 90° – 2 tan2 60° = ?
A.
B.
C.
D.
Consider cos2 30° cos2 45° + 4 sec2 60° + 2cos2 90° – 2 tan2 60°
Choose the correct answer:
If cosec θ = √10 then sec θ = ?
A. 3/√10
B. √10/3
C.1/√10
D. 2/√10
Given: cosec θ = √10
Therefore, sin θ = 1/√10
Since, sin2 θ + cos2 θ = 1
Therefore, cos θ = √(1 – sin2 θ)
=
=
=
=
Therefore, sec θ = 1/cos θ =
Choose the correct answer:
If tan θ = 8/15, then cosec θ = ?
A.17/8
B. 8/17
C. 17/15
D.15/17
Given: tan θ = 8/15 = Perpendicular/Base
On comparing, we get:
Perpendicular = 8
Base = 15
Therefore, (Hypotenuse)2 = (Perpendicular)2 + (Base)2
= 64 + 225
= 289
Therefore, hypotenuse = √289
= 17
Therefore cosec θ = Hypotenuse/Perpendicular
= 17/8
Choose the correct answer:
If sin θ = a/b, then cos θ = ?
A.
B.
C.
D. b/a
Given: sin θ = a/b
Since, sin2 θ + cos2 θ = 1
Therefore, cos θ = √(1 – sin2 θ)
=
=
Choose the correct answer:
If tan θ = √3, then sec θ = ?
A. 2/√3
B. √3/2
C. 1/2
D. 2
Given: tan θ = √3 = Perpendicular/Base
On comparing, we get:
Perpendicular = √3
Base = 1
Therefore, (Hypotenuse)2 = (Perpendicular)2 + (Base)2
= 3 + 1
= 4
Therefore, hypotenuse = √4
= 2
Therefore sec θ = Hypotenuse/Base
= 2/1 = 2
Choose the correct answer:
If sec θ = 25/7, then sin θ = ?
A. 7/24
B.24/7
C. 24/25
D. none of these
Given: sec θ = 25/7
Therefore, cos θ = 1/sec θ = 7/25 = Base/Hypotenuse
Therefore, on comparing, Base = 7 and Hypotenuse = 25
In a right – angled triangle, (Hypotenuse)2 = (Perpendicular)2 + (Base)2
625 = (Perpendicular)2 + 49
Therefore, Perpendicular = √(625 – 49) = √(576)
= 24
Therefore sin θ = Perpendicular/Hypotenuse
= 24/25
Choose the correct answer:
If sin θ = 1/2, then cot θ = ?
A. 1/√3
B. √3
C. √3/2
D. 1
Given: sin θ = 1/2 = Perpendicular/Hypotenuse
Therefore, on comparing, Perpendicular = 1 and Hypotenuse = 2
In a right – angled triangle, (Hypotenuse)2 = (Perpendicular)2 + (Base)2
4 = 1+ (Base)2
Therefore, Base = √(4 – 1)
= √(3)
Therefore cot θ = Base/ Perpendicular
= √3/1
= √3
Choose the correct answer:
If cos θ = 4/5 then tan θ = ?
A. 3/4
B. 4/3
C. 3/5
D. 5/3
Given: cos θ = 4/5 = Base/Hypotenuse
Therefore, on comparing, Base = 4 and Hypotenuse = 5
In a right – angled triangle, (Hypotenuse)2 = (Perpendicular)2 + (Base)2
25 = (Perpendicular)2 + 16
Therefore, Perpendicular = √(25 – 16) = √(9)
= 3
Therefore tan θ = Perpendicular/Base
= 3/4
Choose the correct answer:
If 3x = cosec θ and 3/x = cot θ, then
A. 1/27
B.1/81
C. 1/3
D.1/9
Given: 3x = cosec θ , and 3/x = cot θ
Consider 3(x2 – (1/ x2)) =
=
= (1/3)(cosec2 θ – cot2 θ)
= 1/3 (∵ cosec2 x – cot2 x = 1)
Choose the correct answer:
If 2x = sec A and 2/x = tan A then
A.
B.
C.
D.
Given: 2x = sec A, and 2/x = tan A
Consider 2(x2 – (1/ x2))
=
=
= (1/2) [sec2 A – tan2 A]
= (1/2)[1]
= 1/2 (∵ sec2 x – tan2 x = 1)
Choose the correct answer:
If tan θ = 4/3, then (sin θ + cos θ) = ?
A. 7/3
B. 7/4
C. 7/5
D. 5/7
Given: tan θ = 4/3 = Perpendicular/Base
Therefore, (Hypotenuse)2 = (Perpendicular)2 + (Base)2
= 16 + 9
= 25
Therefore, hypotenuse = √25
= 5
Therefore sin θ = Perpendicular/Hypotenuse
= 4/5
Also, cos θ = Base/Hypotenuse
= 3/5
Thus, sin θ + cos θ = (4/5) + (3/5)
= 7/5
Choose the correct answer:
If (tan θ + cot θ) = 5 then (tan2 θ + cot2 θ) = ?
A.27
B. 25
C. 24
D. 23
Given: tan θ + cot θ = 5
Squaring both sides, we get:
tan2 θ + cot2 θ + 2 tan θ cot θ = 25
tan2 θ + cot2 θ = 25 – 2 tan θ cot θ
= 25 – 2
= 23
Choose the correct answer:
If (cos θ + sec θ) = 5/2, then (cos2 θ + sec2 θ) = ?
A. 21/4
B. 17/4
C. 29/4
D. 33/4
Given: cos θ + sec θ = 5/2
Squaring both sides, we get:
cos2 θ + sec2 θ + 2 cos θ sec θ = 25/4
cos2 θ + sec2 = (25/4) – 2 cos θ sec θ
= 25/4 – 2
= (25 – 8)/4
= 17/4
Choose the correct answer:
If
A. – 2/3
B. – 3/4
C. 2/3
D. 3/4
Given: tan θ = 1/√7
∴ tan2 θ = 1/7
Consider =
Multiply numerator and denominator by sin θ:
=
=
= 6/8
= 3/4
Choose the correct answer:
If
A. 1/7
B. 5/7
C. 3/7
D. 5/14
Given: 7tan θ = 4
Therefore tan θ = 4/7
Consider and divide numerator and denominator by cos θ:
=
=
=
= 1/7
Choose the correct answer:
If
A. 1/3
B. 3
C. 1/9
D. 9
Given: 3cot θ = 4
Therefore cot θ = 4/3
Consider and divide numerator and denominator by sin θ:
=
=
=
= 9
Choose the correct answer:
If tan θ = a/b, then
A.
B.
C.
D.
Given: tan θ = a/b
Consider and divide numerator and denominator by cos θ:
=
=
=
Choose the correct answer:
If sin A + sin2A = 1 then cos2A + cos4A = ?
A. 1/2
B.1
C. 2
D. 3
Given: sin A + sin2 A = 1
Therefore sin A = 1 – sin2 A = cos2 A ……(1)
Now, consider cos2A + cos4A = cos2 A(1 + cos2A)
Put the value of cos2A in the above equation:
Therefore, cos2A + cos4A = cos2 A(1 + cos2A)
= (1 – sin2 A)(1+1 – sin2 A)
Again, from equation (1), we have 1 – sin2 A = sin A. So, put the value of sin A in the above equation:
Therefore, cos2A + cos4A = (sinA)(1+ sinA)
= sin A + sin2 A
= 1 (given)
Therefore, cos2A + scos4A = 1
Choose the correct answer:
If cos A + cos2A = 1 then sin2A + sin4A = ?
A. 1
B. 2
C. 4
D. 3
Given: cos A + cos2 A = 1
Therefore cos A = 1 – cos2 A = sin2 A ……(1)
Now, consider sin2A + sin4A = sin2 A(1 + sin2A)
Put the value of sin2A in the above equation:
Therefore, sin2A + sin4A = sin2 A(1 + sin2A)
= (1 – cos2 A)(1+1 – cos2 A)
Again, from equation (1), we have 1 – cos2 A = cos A. So put the value of cos A in the above equation:
Therefore, sin2A + sin4A = (cosA)(1+ cosA)
= cos A + cos2 A
= 1 (given)
Therefore, sin2A + sin4A = 1
Choose the correct answer:
A. sec A + tan A
B. sec A – tan A
C. sec A tan A
D. none of these
Consider and rationalize:
=
=
=
=
=
= sec A – tan A
Choose the correct answer:
A. cosec A – cot A
B. cosec A + cot A
C. cosec A cot A
D. none of these
Consider and rationalize:
=
=
=
=
=
= cosec A + cot A
Choose the correct answer:
If tan θ = a/b, then ?
A.
B.
C.
D.
Given: tan θ = a/b
Consider and divide numerator and denominator by cos θ:
=
=
=
Choose the correct answer:
(cosec θ – cot θ)2 = ?
A.
B.
C.
D. none of these
Consider (cosec θ – cot θ)2 =
=
=
=
=
=
= R.H.S.
Hence, proved.
Choose the correct answer:
(sec A + tan A)(1 – sin A) = ?
A. sin A
B. cos A
C. sec A
D. cosec A
Consider (sec A + tan A)(1 – sin A) =
=
=
=
= cos A
A.
B. 4
C. 6
D. 5
Consider + 3 tan2 56° tan2 34°
= + 3 tan2 56° tan2 (90° – 56°)
= + 3 tan2 56° cot2 56°
= (1/1) + 3(1)
= 1 + 3
= 4
The value of (sin2 30° cos2 45° + 4 tan2 30°+ (1/2) sin2 90o + (1/8)cot2 60o) = ?
A. 3/8
B. 5/8
C. 6
D. 2
Consider (sin2 30° cos2 45° + 4 tan2 30°+ (1/2) sin2 90o + (1/8) cot2 60o)
= [(1/2)2 × (1/√2)2 + 4 (1/√3)2 + (1/2) × (1)2 + (1/8)(1/√3)2]
= [(1/4) × (1/2)] + [(4/3)] + (1/2) + (1/24)
= (1/8) + (4/3) + (1/2) + (1/24)
= (3 + 32 + 12 + 1)/24
= 48/24
= 2
If cos A + cos2 A = 1 then (sin2A + sin4A) = ?
A. 1/2
B. 2
C. 1
D. 4
Given: cos A + cos2 A = 1
Therefore cos A = 1 – cos2 A = sin2 A ……(1)
Now, consider sin2A + sin4A = sin2 A(1 + sin2A)
Put the value of sin2A in the above equation:
Therefore, sin2A + sin4A = sin2 A(1 + sin2A)
= (1 – cos2 A)(1+1 – cos2 A)
Again, from equation (1), we have 1 – cos2 A = cos A. So put the value of cos A in the above equation:
Therefore, sin2A + sin4A = (cosA)(1+ cosA)
= cos A + cos2 A
= 1 (given)
Therefore, sin2A + sin4A = 1
If sin θ = √3/2, then (cosec θ + cot θ) = ?
A. (2 + √3)
B. 2√3
C. √2
D.√3
Given: sin θ = √3/2
Therefore, cosec θ = 1/sin θ = 2/√3
cos θ = √(1 – sin2 θ)
= √(1 – (3/4))
= √(1/4)
= 1/2
cot θ = cos θ/sin θ = (1/2)/√3/2
= 1/√3
Therefore, (cosec θ + cot θ) = (2/√3) + (1/√3)
= 3/√3
= √3
If cot A = 4/5, prove that
Given: cot A = 4/5
Consider and divide numerator and denominator by sin A:
=
=
=
= 9
If 2x = sec A and 2/x = tan A, prove that .
Given: 2x = sec A, and 2/x = tan A
Therefore,
(2x)2 = sec2A
⇒ 4x2 = sec2A [1]
and
[2]
On subtracting [2] from [1], we get
(∵ sec2 x – tan2 x = 1)
If √3 tan θ = 3 sin θ, prove that (sin2 θ – cos2 θ) = 1/3.
Given: √3 tanθ = 3 sinθ
⇒
⇒
⇒
⇒
Also, we know,
⇒
⇒
Now, we need to prove that:
sin2θ – cos2θ = 1/3
⇒ L.H.S =
⇒ L.H.S =
⇒ L.H.S = 1/3
Prove that .
Consider L.H.S. =
=
=
= 1/1
= 1
= R.H.S.
Hence, proved.
If 2 sin 2θ = √3, prove that θ = 30°.
Given: 2 sin 2θ = √3
Therefore, sin 2θ = √3/2
⇒ sin 2θ = sin 60°
⇒ 2θ = 60°/2 = 30°
Therefore, θ = 30°
Prove that .
Consider and rationalize:
=
=
=
=
=
= cosec A + cot A
If cosec θ + cot θ = p, prove that .
Given: cosec θ + cot θ = p
p2 – 1 = (cosec θ + cot θ)2 – 1
= cosec2 θ + cot2 θ + 2 cosec θ cot θ – 1
= cosec2 θ – 1 + cot2 θ + 2 cosec θ cot θ
= cot2 θ + cot2 θ + 2 cosec θ cot θ
= 2 cot θ (cot θ + cosec θ)
Also, p2 + 1 = (cosec θ + cot θ)2 + 1
= cosec2 θ + cot2 θ + 2 cosec θ cot θ + 1
= cosec2 θ + 1 + cot2 θ + 2 cosec θ cot θ
= cosec2 θ + cosec2 θ + 2 cosec θ cot θ
= 2 cosec θ (cosec θ + cot θ)
Now, consider L.H.S. =
=
= cot θ/cosec θ
= cos θ
= R.H.S.
Hence, proved.
Prove that .
Consider R.H.S. = and rationalize:
=
=
=
=
=
= (cosec A – cot A)2
= L.H.S.
Hence, proved.
If 5 cot θ = 3, show that the value of is 16/29.
Given: 5cot θ = 3
Therefore cot θ = 3/5
Consider and divide numerator and denominator by sin θ:
=
=
=
= 16/29
Hence, showed.
Prove that (sin 32° cos 58° + cos 32° sin 58°) = 1.
Consider L.H.S. = (sin 32° cos 58° + cos 32° sin 58°)
= sin 32° cos (90° – 32°) + cos 32° sin (90° – 32°)
= sin2 32° + cos2 32°
= 1
= R.H.S.
Hence, proved.
If x = a sin θ + b cos θ and y = a cos θ – b sin θ, prove that x2 + y2 = a2 + b2.
Given: a sin θ + b cos θ = x …….(1)
a cos θ – b sin θ = y …….(2)
Square equation (1) and (2) on both sides:
a2 sin2 θ + b2 cos2 θ + 2ab cos θ sin θ = x2 …….(3)
a2 cos2 θ + b2 sin2 θ – 2ab cos θ sin θ = y2 ……..(4)
Add equation (3) and (4):
[a2 sin2 θ + b2 cos2 θ + 2ab cos θ sin θ] + [a2 cos2 θ + b2 sin2 θ – 2ab cos θ sin θ] = x2 + y2
⇒ a2 (sin2 θ + cos2 θ) + b2 (cos2 θ + sin2 θ) = x2 +y2
⇒ a2 +b2 = x2 + y2
Hence, proved.
Prove that .
Consider L.H.S. =
Multiply numerator and denominator by (1 + sin θ):
=
=
=
=
= [(1/cos θ) + (sin θ/cos θ)]2
= (sec θ + tan θ)2
= R.H.S.
Hence, proved.
Prove that .
Consider L.H.S. =
Multiply and divide the first term by (sec θ + tan θ):
=
= – sec θ
= sec θ + tan θ – sec θ (∵1 + tan2 θ = sec2 θ)
= tan θ
Consider R.H.S. =
Multiply and divide the second term by (sec θ – tan θ):
=
= sec θ –
= sec θ – sec θ + tan θ (∵1 + tan2 θ = sec2 θ)
= tan θ
Therefore, L.H.S. = R.H.S.
Hence, proved.
Prove that .
Consider L.H.S. =
=
=
= sin A/cos A
= tan A
= R.H.S.
Hence, proved.
Prove that
Consider L.H.S. =
=
=
=
=
=
=
=
=
= tan A + (1/tan A) + 1
= 1 + tan A + cot A
= R.H.S.
Hence, proved.
If sec 5A = cosec (A – 36°) and 5A is an acute angle, show that A = 21°.
We are given that: sec 5A = cosec (A – 36°)
∴We can rewrite it as: cosec (90° – 5A) = cosec (A – 36°)
On comparing both sides, we get,
90° – 5A = A – 36°
⇒ A + 5A = 90° + 36°
⇒ 6A = 126°
⇒ A = 21°
Hence, proved.