Buy BOOKS at Discounted Price

Trigonometric Identities

Class 10th Mathematics RS Aggarwal Solution
Exercise 8a
  1. (1 - cos^2 θ)cosec^2 θ = 1 Prove each of the following identities:…
  2. (1 + cot^2 θ) sin^2 θ = 1 Prove each of the following identities:…
  3. (sec^2 θ - 1) cot^2 θ = 1 Prove each of the following identities:…
  4. (sec^2 θ - 1)(cosec^2 θ - 1) = 1 Prove each of the following identities:…
  5. (1 - cos^2 θ) sec^2 θ = tan^2 θ Prove each of the following identities:…
  6. sin^2theta + 1/1+tan^2theta = 1 Prove each of the following identities:…
  7. 1/1+tan^2theta + 1/1+cot^2theta = 1 Prove each of the following identities:…
  8. (1 + cos θ)(1 - cos θ)(1 + cot^2 θ) = 1 Prove each of the following identities:…
  9. (cosec θ)(1 + cos θ)(cosec θ - cot θ) = 1 Prove each of the following…
  10. cot^2theta - 1/sin^2theta = - 1 Prove each of the following identities:…
  11. tan^2theta - 1/cos^2theta = - 1 Prove each of the following identities:…
  12. cos^2theta + 1/1+cot^2theta = 1 Prove each of the following identities:…
  13. 1/1+sintegrate heta + 1/1-sintegrate heta = 2sec^2theta Prove each of the…
  14. sec θ(1 - sin θ)(sec θ + tan θ) = 1 Prove each of the following identities:…
  15. sin θ (1 + tan θ) + cos θ (1+ cot θ) = (sec θ + cosec θ) Prove each of the…
  16. 1 + cot^2theta /1+cosectheta = cosectheta Prove each of the following…
  17. 1 + tan^2theta /1+sectheta = sectheta Prove each of the following identities:…
  18. (1+tan^2theta) cottheta /cosec^2theta = tantheta Prove each of the following…
  19. tan^2theta /1+tan^2theta + cot^2theta /1+cot^2theta = 1 Prove each of the…
  20. sintegrate heta /1+costheta + 1+costheta /sintegrate heta = 2cosectheta Prove…
  21. Prove : tantheta /1-cottheta + cottheta /1-tantheta = (1+sectheta cosectheta)…
  22. cos^2theta /1-tantheta + sin^3theta /sintegrate heta -costheta = (1+sintegrate…
  23. costheta /1-tantheta - sin^2theta /costheta -sintegrate heta = (costheta…
  24. (1+tan^2theta) (1+cot^2theta) = 1/sin^2theta -sin^4theta Prove each of the…
  25. tantheta /(1+tan^2theta)^2 + cottheta /(1+cot^2theta)^2 = sintegrate heta…
  26. sin^6 θ + cos^6 θ = 1 - 3 sin^2 θ cos^2 θ Prove each of the following…
  27. sin^2 θ + cos^4 θ = cos^2 θ + sin^4 θ Prove each of the following identities:…
  28. cosec^4 θ - cosec^2 θ = cot^4 θ + cot^2 θ Prove each of the following…
  29. 1-tan^2theta /1+tan^2theta = (cos^2theta -sin^2theta) Prove each of the…
  30. 1-tan^2theta /cot^2theta -1 = tan^2theta Prove each of the following…
  31. tantheta /sectheta -1 + tantheta /sectheta +1 = 2cosectheta Prove each of the…
  32. cottheta /cosectheta +1 + cosectheta +1/cottheta = 2sectheta Prove each of the…
  33. sectheta -1/sectheta +1 = sin^2theta /(1+costheta)^2 Prove each of the…
  34. sectheta -tantheta /sectheta +tantheta = cos^2theta /(1+sintegrate heta)^2…
  35. root 1+sintegrate heta /1-sintegrate heta = (sectheta +tantheta) Prove each of…
  36. root 1-costheta /1+costheta = (cosectheta -cottheta) Prove each of the…
  37. root 1+costheta /1-costheta + root 1-costheta /1+costheta = 2cosectheta Prove…
  38. cos^3theta +sin^3theta /costheta +sintegrate heta + cos^3theta -sin^3theta…
  39. sintegrate heta /(cottheta +cosectheta) - sintegrate heta /(cottheta…
  40. sintegrate heta -costheta /sintegrate heta +costheta + sintegrate heta…
  41. sintegrate heta +costheta /sintegrate heta -costheta + sintegrate heta…
  42. 1+costheta -sin^2theta /sintegrate heta (1+costheta) = cottheta Prove each of…
  43. cosestheta +cottheta /cosestheta -cottheta = (cosestheta +cot theta)^2 =…
  44. sectheta +tantheta /sectheta -tantheta = (sectheta +tantheta)^2 =…
  45. 1+costheta +sintegrate heta /1+costheta -sintegrate heta = 1+sintegrate heta…
  46. sintegrate heta +1-costheta /costheta -1+sintegrate heta = 1+sintegrate heta…
  47. sintegrate heta /(sectheta +tantheta -1) + costheta /(cosestheta +cottheta -1)…
  48. sintegrate heta +costheta /sintegrate heta -costheta + sintegrate heta…
  49. Prove each of the following identities:
  50. (1+tantheta +cottheta) (sintegrate heta -costheta) = (sectheta /cosec^2theta -…
  51. cot^2theta (sectheta -1)/(1+sintegrate heta) + sec^2theta (sintegrate heta…
  52. 1/(sec^2theta -cos^2theta) + 1/(coses^2theta +sin^2theta) (sin^2theta…
  53. (sina-sinb)/(cosa+cosb) + (cosa-cosb)/(sina+sinb) = 0 Prove each of the…
  54. tana+tanb/cota+cotb = tanatanb Prove each of the following identities:…
  55. cos^2 θ + cos θ = 1 Show that none of the following is an identity:…
  56. sin^2 θ + sin θ = 2 Show that none of the following is an identity:…
  57. tan^2 θ + sin θ = cos^2 θ Show that none of the following is an identity:…
  58. Prove that: (sin θ - 2 sin^3 θ) = (2cos^3 θ - cos θ) tan θ.
Exercise 8b
  1. If a cos θ + b sin θ = m and a sin θ - b cos θ = n, prove that (m^2 + n^2) =…
  2. If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that (x^2 - y^2) =…
  3. If (x/a sintegrate heta - y/b costheta) = 1 (x/a costheta + y/b sintegrate heta)…
  4. If (sec θ + tan θ) = m and (sec θ - tan θ) = n, show that mn = 1.…
  5. If (cosec θ + cot θ) = m and (cosec θ - cot θ) = n, show that mn = 1…
  6. If x = a cos^3 θ and y = b sin^3 θ, prove that (x/a)^2/3 + (y/b)^2/3 = 1…
  7. If (tan θ + sin θ) = m and (tan θ - sin θ) = n, prove that (m^2 - n^2)^2 = 16mn.…
  8. If (cot θ + tan θ) = m and (sec θ - cos θ) = n, prove that (m^2 n) 2/3 - (mn^2)…
  9. If (cosec θ - sin θ) = a^3 and (sec θ - cos θ) = b^3 , prove that a^2 b^2 (a^2 +…
  10. If (2 sin + 3 cos) = 2, prove that (3 sin 2 cos) = 3.
  11. If (sin + cos) = 2 cos , show that cot = (2 + 1).
  12. If (cos θ + sin θ) = √2sin θ, prove that (sin θ - cos θ) = √2cos θ.…
  13. If sec θ + tan θ = p, prove that (i) sectheta = 1/2 (p + 1/p) (ii) tantheta =…
  14. If tan A = n tan B and sin A = m sin B, prove that cos^2a = (m^2 - 1)/(m^2 - 1)…
  15. If m = (cos θ - sin θ) and n = (cos θ + sin θ) then show that root m/n + root…
Exercise 8c
  1. Write the value of (1 - sin^2 θ) sec^2 θ.
  2. Write the value of (1 - cos^2 θ) cosec^2 θ.
  3. Write the value of (1 + tan^2 θ) cos^2 θ.
  4. Write the value of (1 + cot^2 θ) sin^2 θ.
  5. Write the value of
  6. Write the value of (cot^2theta - 1/sin^2theta) .
  7. Write the value of sin θ cos (90° - θ) + cos θ sin (90° - θ).
  8. Write the value of cosec^2 (90° - θ) - tan^2 θ.
  9. Write the value of sec^2 θ (1 + sin θ)(1 - sin θ).
  10. Write the value of cosec^2 θ (1 + cos θ)(1 - cos θ).
  11. Write the value of sin^2 θ cos^2 θ (1 + tan^2 θ)(1 + cot^2 θ).
  12. Write the value of (1 + tan^2 θ)(1 + sin θ)(1 - sin θ).
  13. Write the value of 3 cot^2 θ - 3 cosec^2 θ.
  14. Write the value of 4tan^2theta - 4/cos^2theta .
  15. Write the value of tan^2theta -sec^2theta /cot^2theta -coses^2theta…
  16. If sin θ = 1/2, write the value of (3 cot^2 θ + 3).
  17. If cos θ = 2/3, write the value of (4 +4 tan^2 θ).
  18. If cos θ = 7/25, write the value of (tan θ + cot θ).
  19. If cos θ = 2/3, write the value of (sectheta -1)/(sectheta +1) .
  20. If 5 tan θ = 4, write the value of (costheta -sintegrate heta)/(costheta…
  21. If 3 cot θ = 4, write the value of (2costheta +sintegrate heta)/(4costheta…
  22. If cot θ = 1/√3 write the value of 1-cos^2theta /2-sin^2theta
  23. If tan θ = 1/√5write the value of (cosec^2theta -sec^2theta)/(cosec^2theta…
  24. If cot A = 4/3 and (A + B) = 90°, what is the value of tan B?
  25. If cos B = 3/5 and (A + B) = 90°, find the value of sin A.
  26. If √3sin θ = cos θ and θ is an acute angle, find the value of θ.
  27. Write the value of tan 10° tan 20° tan 70° tan 80°.
  28. Write the value of tan 1° tan 2° ... tan 89°.
  29. Write the value of cos 1° cos 2° ... cos 180°.
  30. If tan A = 5/12, find the value of (sin A + cos A) sec A.
  31. If sin θ = cos (θ - 45°), where θ is acute, find the value of θ.
  32. Find the value of sin50^circle /cos40^circle + cosec40^circle /sec50^circle -…
  33. Find the value of sin 48° sec 42° + cos 48° cosec 42°.
  34. If x = a sin θ and y = b cos θ, write the value of (b^2 x^2 + a^2 y^2).…
  35. If 5x = sec θ and 5/x = tan θ, find the value of 5 (x^2 - 1/x^2)
  36. If cosec θ = 2x and cot θ = 2/x find the value of 2 (x^2 - 1/x^2) .…
  37. If sec θ + tan θ = x, find the value of sec θ.
  38. Find the value of cos38^circle cosec52^circle /tan18^circle tan35^circle…
  39. If sin θ = x, write the value of cot θ.
  40. If sec θ = x, write the value of tan θ.
Multiple Choice Questions (mcq)
  1. Choose the correct answer: sec30^circle /cosec60^circle = ? A. 2/√3 B. √3/2 C. √3 D. 1…
  2. tan35^circle /cot55^circle + cot78^circle /tan12^circle = ? Choose the correct…
  3. tan 10 tan 15 tan 75 tan 80 = ? Choose the correct answer:A. √3 B. 1/√3 C. - 1 D. 1…
  4. tan 5 tan 25 tan 30 tan 65 tan 85 = ? Choose the correct answer:A. √3 B. 1/√3 C. 1 D.…
  5. cos 1 cos 2 cos 3 ... cos 180 = ? Choose the correct answer:A. - 1 B. 1 C. 0 D. 1/2…
  6. 2sin^263^circle + 1+2sin^227^circle /3cos^217^circle - 2+3cos^273^circle = ? Choose the…
  7. sin 47 cos 43 + cos 47 sin 43 = ? Choose the correct answer:A. sin 4° B. cos 4° C. 1 D.…
  8. sec 70 sin 20 + cos 20 cosec 70 = ? Choose the correct answer:A. 0 B. 1 C. - 1 D. 2…
  9. If sin 3A = cos (A 10) and A is acute then A = ? Choose the correct answer:A. 35° B.…
  10. If sec 4A = cosec (A 10) and 4A is acute then A = ? Choose the correct answer:A. 20°…
  11. If A and B are acute angles such that sin A = cos B then (A + B) = ? Choose the…
  12. If cos (+) = 0 then sin () = ? Choose the correct answer:A. sinα B. cosβ C. sin 2α D.…
  13. sin (45 +) cos (45) = ? Choose the correct answer:A. 2 sin θ B. 2 cos θ C. 0 D. 1…
  14. sec^2 10 cot^2 80 = ? Choose the correct answer:A. 1 B. 0 C. 3/2 D. 1/2…
  15. cosec^2 57 tan^2 33 = ? Choose the correct answer:A. 0 B. 1 C. - 1 D. 2…
  16. 2tan^230^circle sec^252^circle sin^238^circle /cosec^270^circle - tan^220^circle = ?…
  17. Choose the correct answer: (sin^222^circle + sin^268^circle)/(cos^222^circle +…
  18. cot (90^circle - theta) sin (90^circle - theta)/sintegrate heta + cot40^circle…
  19. cos38^circle cosec52^circle /tan18^circle tan35^circle tan60^circle tan72^circle…
  20. If 2 sin 2 = 3 then = ? Choose the correct answer:A. 30° B. 45° C. 60o D. 90o…
  21. If 2 cos 3 = 1 then = ? Choose the correct answer:A. 10° B. 15° C. 20° D. 30°…
  22. If 3tan 2 3 = 0 then = ? Choose the correct answer:A. 15° B. 30° C. 45° D. 60°…
  23. If tan x = 3 cot x then x = ? Choose the correct answer:A. 45° B. 60° C. 30° D. 15°…
  24. If x tan 45 cos 60 = sin 60 cot 60 then x = ? Choose the correct answer:A. 1 B. 1/2 C.…
  25. If tan^2 45 cos^2 30 = x sin 45 cos 45 then x = ? Choose the correct answer:A. 2 B. -…
  26. sec^2 60 1 = ? Choose the correct answer:A. 2 B. 3 C. 4 D. 0
  27. (cos 0 + sin 30 + sin 45) (sin 90 + cos 60 cos 45) = ? Choose the correct answer:A.…
  28. sin^2 30 + 4 cot^2 45 sec^2 60 = ? Choose the correct answer:A. 0 B. 1/4 C. 4 D. 1…
  29. 3 cos^2 60 + 2 cot^2 30 5 sin^2 45 = ? Choose the correct answer:A. 13/6 B. 17/4 C. 1…
  30. cos^2 30 cos^2 45 + 4 sec^2 60 + 2cos^2 90 2 tan^2 60 = ? Choose the correct answer:A.…
  31. If cosec = 10 then sec = ? Choose the correct answer:A. 3/√10 B. √10/3 C.1/√10 D.…
  32. If tan = 8/15, then cosec = ? Choose the correct answer:A.17/8 B. 8/17 C. 17/15…
  33. If sin = a/b, then cos = ? Choose the correct answer:A. b/root b^2 - a^2 B. root b^2 -…
  34. If tan = 3, then sec = ? Choose the correct answer:A. 2/√3 B. √3/2 C. 1/2 D. 2…
  35. If sec = 25/7, then sin = ? Choose the correct answer:A. 7/24 B.24/7 C. 24/25 D. none…
  36. If sin = 1/2, then cot = ? Choose the correct answer:A. 1/√3 B. √3 C. √3/2 D. 1…
  37. If cos = 4/5 then tan = ? Choose the correct answer:A. 3/4 B. 4/3 C. 3/5 D. 5/3…
  38. If 3x = cosec and 3/x = cot , then 3 (x^2 - 1/x^2) = ? Choose the correct answer:A.…
  39. If 2x = sec A and 2/x = tan A then 2 (x^2 - 1/x^2) = ? Choose the correct answer:A.…
  40. If tan = 4/3, then (sin + cos) = ? Choose the correct answer:A. 7/3 B. 7/4 C. 7/5 D.…
  41. If (tan + cot) = 5 then (tan^2 + cot^2) = ? Choose the correct answer:A.27 B. 25 C. 24…
  42. If (cos + sec) = 5/2, then (cos^2 + sec^2) = ? Choose the correct answer:A. 21/4 B.…
  43. If tantheta = 1/root 7 (cosec^2theta -sec^2theta)/(cosec^2theta +sec^2theta) = ?…
  44. If 7tantheta = 4 7sintegrate heta -3costheta /7sintegrate heta +3costheta = ? Choose…
  45. If 3cottheta = 4 5sintegrate heta +3costheta /5sintegrate heta -3costheta = ? Choose…
  46. If tan = a/b, then (asintegrate heta -bcostheta)/(asintegrate heta +bcostheta) = ?…
  47. If sin A + sin^2 A = 1 then cos^2 A + cos^4 A = ? Choose the correct answer:A. 1/2 B.1…
  48. If cos A + cos^2 A = 1 then sin^2 A + sin^4 A = ? Choose the correct answer:A. 1 B. 2…
  49. root 1-sina/1+sina = ? Choose the correct answer:A. sec A + tan A B. sec A - tan A C.…
  50. root 1+cosa/1-cosa = ? Choose the correct answer:A. cosec A - cot A B. cosec A + cot A…
  51. If tan = a/b, then costheta +sintegrate heta /costheta -sintegrate heta = ? Choose the…
  52. (cosec cot)^2 = ? Choose the correct answer:A. 1+sintegrate heta /1-sintegrate heta B.…
  53. (sec A + tan A)(1 sin A) = ? Choose the correct answer:A. sin A B. cos A C. sec A D.…
Formative Assessment (unit Test)
  1. cos^256^circle + cos^234^circle /sin^256^circle + sin^234^circle + 3tan^256^circle…
  2. The value of (sin^2 30° cos^2 45° + 4 tan^2 30°+ (1/2) sin^2 90o + (1/8)cot^2 60o) =…
  3. If cos A + cos^2 A = 1 then (sin^2 A + sin^4 A) = ?A. 1/2 B. 2 C. 1 D. 4…
  4. If sin θ = √3/2, then (cosec θ + cot θ) = ?A. (2 + √3) B. 2√3 C. √2 D.√3…
  5. If cot A = 4/5, prove that sina+cosa/sina-cosa = 9
  6. If 2x = sec A and 2/x = tan A, prove that (x^2 - 1/x^2) = 1/4 .
  7. If √3 tan θ = 3 sin θ, prove that (sin^2 θ - cos^2 θ) = 1/3.
  8. Prove that sin^273^circle + sin^217^circle /cos^228^circle + cos^262^circle = 1 .…
  9. If 2 sin 2θ = √3, prove that θ = 30°.
  10. Prove that root 1+cosa/1-cosa = (coseca+cota) .
  11. If cosec θ + cot θ = p, prove that costheta = (p^2 - 1)/(p^2 + 1) .…
  12. Prove that (coseca-cota)^2 = (1-cosa)/(1+cosa) .
  13. If 5 cot θ = 3, show that the value of (5sintegrate heta -3costheta)/(4sintegrate heta…
  14. Prove that (sin 32° cos 58° + cos 32° sin 58°) = 1.
  15. If x = a sin θ + b cos θ and y = a cos θ - b sin θ, prove that x^2 + y^2 = a^2 + b^2 .…
  16. Prove that (1+sintegrate heta)/(1-sintegrate heta) = (sectheta +tantheta)^2 .…
  17. Prove that 1/sectheta -tantheta - 1/costheta = 1/costheta - 1/sectheta +tantheta .…
  18. Prove that (sina-2sin^3a)/(2cos^3a-cosa) = tana .
  19. Prove that tana/(1-cota) + cota/(1-tana) = (1+tana+cota)
  20. If sec 5A = cosec (A - 36°) and 5A is an acute angle, show that A = 21°.…

Exercise 8a
Question 1.

Prove each of the following identities:

(1 – cos2 θ)cosec2 θ = 1


Answer:

Consider the left – hand side:

L.H.S. = (1 – cos2θ) × cosec2θ


= (sin2θ) × cosec2θ (∵ sin2θ + cos2 θ = 1)


= 1


= R.H.S.


Hence, proved.



Question 2.

Prove each of the following identities:

(1 + cot2 θ) sin2θ = 1


Answer:

Consider the left – hand side:

L.H.S. = (1 + cot2θ) × sin2 θ


= (cosec2 θ) × sin2 θ (∵ 1 + cot2 θ = cosec2 θ)


= 1


= R.H.S.


Hence, proved.



Question 3.

Prove each of the following identities:

(sec2 θ – 1) cot2 θ = 1


Answer:

Consider the left – hand side:

L.H.S. = (sec2 θ – 1) × cot2 θ


= (tan2θ) × cot2θ (∵ 1 + tan2 θ = sec2 θ)


= 1


= R.H.S.


Hence, proved.



Question 4.

Prove each of the following identities:

(sec2 θ – 1)(cosec2 θ – 1) = 1


Answer:

Consider the left – hand side:

L.H.S. = (sec2 θ – 1)(cosec2 θ – 1)


= (tan2θ) × cot2θ (∵ 1 + tan2 θ = sec2 θ and 1 + cot2 θ = cosec2 θ)


= 1


= R.H.S.


Hence, proved.



Question 5.

Prove each of the following identities:

(1 – cos2 θ) sec2 θ = tan2 θ


Answer:

Consider the left – hand side:

L.H.S. = (1 – cos2 θ) sec2 θ

= (sin2θ) × (1/cos2θ) (∵ sin2 θ + cos2 θ = 1

= tan2 θ

= R.H.S.

Hence, proved.


Question 6.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. =


= (sin2θ) + (1/sec2 θ) (∵ 1 + tan2 θ = sec2 θ)


= (sin2θ) + (cos2θ) (∵ sin2 θ + cos2 θ = 1)


= 1


= R.H.S.


Hence, proved.



Question 7.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. =


= (1/sec2θ) + (1/cosec2 θ) (∵ 1 + tan2 θ = sec2 θ and 1 + tan2 θ = sec2 θ)


= (cos2 θ) + (sin2θ) (∵ sin2 θ + cos2 θ = 1)


= 1


= R.H.S.


Hence, proved.



Question 8.

Prove each of the following identities:

(1 + cos θ )(1 – cos θ)(1 + cot2 θ) = 1


Answer:

Consider the left – hand side:

L.H.S. = (1 + cos θ)(1 – cos θ)(1 + cot2 θ)


= (1 – cos2 θ) × cosec2 θ (∵ 1 + cot2 θ = cosec2 θ)


= (sin2 θ) × cosec2 θ (∵ sin2θ + cos2 θ = 1)


= 1


= R.H.S.


Hence, proved.



Question 9.

Prove each of the following identities:

(cosec θ)(1 + cos θ)(cosec θ – cot θ) = 1


Answer:

To prove: (cosec θ)(1 + cos θ)(cosec θ – cot θ) = 1

Proof:

Consider the left – hand side:

(cosec θ) (1 + cos θ)(cosec θ – cot θ)


⇒ (cosec θ) (1 + cos θ)(cosec θ – cot θ) = (cosec θ + cosec θ cos θ)(cosec θ – cot θ)


since cosec θ = 1/sin θ

⇒ (cosec θ) (1 + cos θ)(cosec θ – cot θ)=


Also



So,

⇒ (cosec θ) (1 + cos θ)(cosec θ – cot θ) =(cosec θ + cot θ)(cosec θ – cot θ)

Use the formula (a + b)(a - b) = a2 - b2

⇒ (cosec θ) (1 + cos θ)(cosec θ – cot θ) =(cosec2 θ - cot2 θ)


Since cosec2 θ - cot2 θ = 1

⇒ (cosec θ) (1 + cos θ)(cosec θ – cot θ) =1

= R.H.S.


Hence, proved.


Question 10.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. = cot2 θ –


=


=


= ( – sin2 θ) × sin2 θ (∵ sin2θ + cos2 θ = 1)


= – 1


= R.H.S.


Hence, proved.



Question 11.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. = tan2 θ –


=


=


= ( – cos2 θ) × cos2 θ (∵ sin2θ + cos2 θ = 1)


= – 1


= R.H.S.


Hence, proved.



Question 12.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. = cos2 θ +


= cos2 θ + (∵ 1 + cot2 θ = cosec2 θ)


= cos2 θ + sin2 θ


= ( – cos2 θ) × cos2 θ (∵ sin2θ + cos2 θ = 1)


= – 1


= R.H.S.


Hence, proved.



Question 13.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. =


=


=


= 2 sec2 θ


= R.H.S.


Hence, proved.



Question 14.

Prove each of the following identities:

sec θ(1 – sin θ)(sec θ + tan θ) = 1


Answer:

Consider the left – hand side:

L.H.S. = sec θ(1 – sin θ)(sec θ + tan θ)


= × (1 – sin θ) ×


= × (1 – sin θ) ×


=


=


= 1


= R.H.S.


Hence, proved.



Question 15.

Prove each of the following identities:

sin θ (1 + tan θ) + cos θ (1+ cot θ) = (sec θ + cosec θ)


Answer:

To prove: sin θ (1 + tan θ) + cos θ (1+ cot θ) = (sec θ + cosec θ)
Proof:
Consider the left – hand side:

L.H.S. = sin θ (1 + tan θ) + cos θ (1+ cot θ)


= sin θ (1 + ) + cos θ (1+ )


= sin θ + (cos θ) ×


= (cos θ + sin θ)


= (cos θ + sin θ)
We know cos2θ + sin2θ = 1


=

=


= cosec θ + sec θ


= R.H.S.


Hence, proved.


Question 16.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. =


=


= 1+


=


=


=


= 1/sin θ


= cosec θ


= R.H.S.


Hence, proved.



Question 17.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. =


=


=


=


=


=


= 1/cos θ


= sec θ


= R.H.S.


Hence, proved.



Question 18.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. =


=


=


=


= tan θ


= R.H.S.


Hence, proved.



Question 19.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. =


=


=


=


=


= 1


= R.H.S.


Hence, proved.



Question 20.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. =

Adding both the fractions, we get

=

As sin2θ + cos2θ = 1, we have


=


=


= 2/sin θ


= 2cosec θ


= R.H.S.


Hence, proved.


Question 21.

Prove :


Answer:

Consider L.H.S. =

=


= +


=


=


=


= sec θ cosec θ + 1


= R.H.S.


Hence, proved.


Question 22.

Prove each of the following identities:



Answer:

Consider the left – hand side:

L.H.S. =


=


=


=


=


= cos2 θ + sin2 θ + sin θ cos θ


= 1 + cos θ sin θ


= R.H.S.


Hence, proved.



Question 23.

Prove each of the following identities:



Answer:

=

=


=


=


= cos θ + sin θ


= R.H.S.


Hence, proved.



Question 24.

Prove each of the following identities:



Answer:

Consider L.H.S. = (1 + tan2 θ) (1 + cot2 θ)

= (sec2 θ)(cosec2 θ)


=


=


=


= R.H.S.


Hence, proved.



Question 25.

Prove each of the following identities:



Answer:

Consider L.H.S. =

=


=


=


=


= sin θ (cos3 θ) + cos θ (sin3 θ)


= sin θ cos θ (cos2 θ + sin2 θ)


= sin θ cos θ


= R.H.S.


Hence, proved.



Question 26.

Prove each of the following identities:

sin6 θ + cos6 θ = 1 – 3 sin2 θ cos2 θ


Answer:

Consider L.H.S. = sin6 θ + cos6 θ

= (sin2 θ)3 + (cos2 θ)3


= (sin2 θ + cos2 θ)( sin4 θ + cos4 θ – sin2 θ cos2 θ)


[Using a3 + b3 = (a + b)(a2 + b2 – ab)]


= ( sin4 θ + cos4 θ – sin2 θ cos2 θ)


(∵sin2 θ + cos2 θ = 1)


= [{(sin2 θ + cos2 θ)2 – 2 sin2 θ cos2 θ) – sin2 θ cos2 θ]


(∵(a2 + b2 ) = (a + b)2 – 2ab) )


= [1 – 2 sin2 θ cos2 θ – sin2 θ cos2 θ]


= 1 – 3 sin2 θ cos2 θ


= R.H.S.


Hence, proved.



Question 27.

Prove each of the following identities:

sin2 θ + cos4θ = cos2 θ + sin4 θ


Answer:

Consider L.H.S. = sin2 θ + cos4 θ

= (sin2 θ) + (cos2 θ)2


= (sin2 θ) + (1 – sin2 θ)2


= (sin2 θ) + 1 + sin4 θ – 2sin2 θ


= 1 – sin2 θ + sin4 θ


= cos2 θ + sin4 θ


= R.H.S.


Hence, proved.



Question 28.

Prove each of the following identities:

cosec4 θ – cosec2 θ = cot4 θ + cot2 θ


Answer:

Consider L.H.S. = cosec4 θ – cosec2 θ

= (cosec2 θ)2 – (cosec2 θ)


= (1 + cot2 θ)2 – (cosec2 θ)


= 1 + cot4 θ + 2cot2 θ – (cosec2 θ)


= 1 + cot4 θ + cot2 θ – (cosec2 θ – cot2 θ)


= 1 + cot4 θ + cot2 θ – 1


= cot4 θ + cot2 θ


= R.H.S.


Hence, proved.



Question 29.

Prove each of the following identities:



Answer:

Consider L.H.S. =

=


=


=


= cos2 θ – sin2 θ


= R.H.S.


Hence, proved.



Question 30.

Prove each of the following identities:



Answer:

Consider L.H.S. =

=


=


=


= sin2 θ/ cos2 θ


= tan2 θ


= R.H.S.


Hence, proved.



Question 31.

Prove each of the following identities:



Answer:

Consider L.H.S. = +

=


=


=


=


= [2 (1/cos θ)]/[sin θ /cos θ]


= [2/sin θ]


= 2 cosec θ


= R.H.S.


Hence, proved.



Question 32.

Prove each of the following identities:



Answer:

Consider L.H.S. = +


=


=


=


=


=


= 2 cosec θ/cot θ


= 2 (1/sin θ)/(cos θ/sin θ)


= 2/ cos θ


= 2 sec θ


= R.H.S.


Hence, proved.



Question 33.

Prove each of the following identities:



Answer:

Consider L.H.S. =

Multiply and divide by (sec θ + 1):


=


=


=


=


=


=


= R.H.S.


Hence, proved.



Question 34.

Prove each of the following identities:



Answer:

Consider L.H.S. =

Multiply and divide by (sec θ + tan θ):


=


=


=


=


=


= R.H.S.


Hence, proved.



Question 35.

Prove each of the following identities:



Answer:

Consider L.H.S. =

Multiply and divide by (1 + sin θ):


=


=


=


= (1 + sin θ)/cos θ


= (1/cos θ) + (sin θ/cos θ)


= sec θ + tan θ


= R.H.S.


Hence, proved.



Question 36.

Prove each of the following identities:



Answer:

Consider L.H.S. =

Multiply and divide by (1 – cos θ):


=


=


=


= (1 – cos θ)/sin θ


= (1/sin θ) – (cos θ/sin θ)


= cosec θ – cot θ


= R.H.S.


Hence, proved.



Question 37.

Prove each of the following identities:



Answer:

Consider L.H.S. =

Multiply and divide by (1 + cos θ) in first part and (1 – cos θ) in the second part:


=


=


=


= [(1 + cos θ)/sin θ] + [(1 – cos θ)/sin θ]


= [(1/sin θ) + (cos θ/sin θ)] + [(1/sin θ) – (cos θ/sin θ)]


= [cosec θ + cot θ] + [cosec θ – cot θ]


= 2 cosec θ


= R.H.S.


Hence, proved.



Question 38.

Prove each of the following identities:



Answer:

Consider L.H.S. =

Using identities (a3 + b3) = (a + b)(a2 + b2 – ab) and (a3 – b3) = (a – b)(a2 + b2 + ab)


∴ L.H.S. =


= (cos2 θ + sin2 θ – cos θ sin θ) + (cos2 θ + sin2 θ + cos θ sin θ)


= (1 – cos θ sin θ) + (1 + cos θ sin θ)


= 2


= R.H.S.


Hence, proved.



Question 39.

Prove each of the following identities:



Answer:

Consider L.H.S. =

=



= R.H.S.


Hence, proved.


Question 40.

Prove each of the following identities:



Answer:

Consider L.H.S. =

=


=


=


=


= R.H.S.


Hence, proved.



Question 41.

Prove each of the following identities:



Answer:

Consider L.H.S. =

=


=


=


=


= R.H.S.


Hence, proved.



Question 42.

Prove each of the following identities:



Answer:

Consider L.H.S. =

=


=


=


= cos θ/sin θ


= cot θ


= R.H.S.


Hence, proved.



Question 43.

Prove each of the following identities:



Answer:

Consider L.H.S. =

Multiply and divide by (cosec θ + cot θ):


=


=


= (cosec θ + cot θ)2


Thus, proved.


Also, consider (cosec θ + cot θ)2 = cosec2 θ + cot2 θ+ 2 cosec θ cot θ


= 1 + cot2 θ + cot2 θ+ 2 cosec θ cot θ (∵ 1 + cot2 θ = cosec2 θ)


= (1 + 2 cot2 θ + 2 cosec θ cot θ)


= R.H.S.


Hence, proved.



Question 44.

Prove each of the following identities:



Answer:

Consider L.H.S. =

Multiply and divide by (sec θ + tan θ):


=


=


= (sec θ + tan θ)2


Thus, proved.


Also, consider (sec θ + tan θ)2 = sec2 θ + tan2 θ+ 2 sec θ tan θ


= 1 + tan2 θ + tan2 θ+ 2 sec θ tan θ (∵ 1 + tan2 θ = sec2 θ)


= (1 + 2 tan2 θ + 2 sec θ tan θ)


= R.H.S.


Hence, proved.



Question 45.

Prove each of the following identities:



Answer:

Consider L.H.S. =

Multiply and divide by ((1 + cos θ) + sin θ):


=


=


=


=


=


=


=


= R.H.S.


Thus, proved.



Question 46.

Prove each of the following identities:



Answer:

Consider L.H.S. =

Multiply and divide by (cos θ + 1) + sin θ):


=


=


=


=


=


= R.H.S.


Thus, proved.



Question 47.

Prove each of the following identities:



Answer:

Consider L.H.S. =

=


=


= sin θ cos θ ×


= sin θ cos θ ×


= sin θ cos θ ×


= sin θ cos θ ×


= sin θ cos θ ×


= sin θ cos θ/ sin θ cos θ


= 1


= R.H.S.



Question 48.

Prove each of the following identities:



Answer:

Consider L.H.S. =

=


=


=


Thus, prove.


Also, consider =


=


= R.H.S.


Hence, proved.



Question 49.

Prove each of the following identities:



Answer:

Consider L.H.S. =

=


=


=


=


= (1/sin θ) – (1/cos θ)


= cosec θ – sec θ


= R.H.S.


Hence, proved.



Question 50.

Prove each of the following identities:



Answer:

Consider L.H.S. = (1 + tan θ + cot θ)(sin θ – cos θ)

= sin θ – cos θ + tan θ sin θ – tan θ cos θ + cot θ sin θ – cot θ cos θ

= sin θ – cos θ + tan θ sin θ – sin θ + cos θ – cot θ cos θ

= tan θ sin θ – cot θ cos θ


= R.H.S.

Hence, proved.


Question 51.

Prove each of the following identities:



Answer:

Consider L.H.S. = +

= +


= +


= +


= +


=


= 0


= R.H.S.


Hence, proved.



Question 52.

Prove each of the following identities:



Answer:

Consider L.H.S. = (sin2 θ cos2 θ)

= (sin2 θ cos2 θ)


= (sin2 θ cos2 θ)


= (sin2 θ cos2 θ)


= (sin2 θ cos2 θ)


= (sin2 θ cos2 θ)


=


=


=


=


= R.H.S.



Question 53.

Prove each of the following identities:



Answer:

Consider the left – hand side =

=


=


=


=


= 0


= R.H.S.


Hence, proved.



Question 54.

Prove each of the following identities:



Answer:

Consider the L.H.S. =

=


=


=


= tan A tan B


= R.H.S.


Hence, proved.



Question 55.

Show that none of the following is an identity:

cos2 θ + cos θ = 1


Answer:

If the given equation is an identity, then it is true for every value of θ.

So, let θ = 60°


So, for θ = 60°, consider the L.H.S. = cos2 60° + cos 60°


= (1/2)2 + (1/2)


= (1/4) + (1/2)


= 3/4 ≠ 1


Therefore, L.H.S. ≠ R.H.S.


Thus, the given equation is not an identity.



Question 56.

Show that none of the following is an identity:

sin2 θ + sin θ = 2


Answer:

If the given equation is an identity, then it is true for every value of θ.

So, let θ = 30°


So, for θ = 30°, consider the L.H.S. = sin2 30° + sin 30°


= (1/2)2 + (1/2)


= (1/4) + (1/2)


= 3/4 ≠ 2


Therefore, L.H.S. ≠ R.H.S.


Thus, the given equation is not an identity.



Question 57.

Show that none of the following is an identity:

tan2 θ + sin θ = cos2 θ


Answer:

If the given equation is an identity, then it is true for every value of θ.

So, let θ = 30°


So, for θ = 30°, consider the L.H.S. = tan2 30° + sin 30°


= (1/√3)2 + (1/2)


= (1/3) + (1/2)


= 5/6


Consider the R.H.S. = cos2 30° = (√3/2)2


= 3/4


Therefore, L.H.S. ≠ R.H.S.


Thus, the given equation is not an identity.



Question 58.

Prove that: (sin θ – 2 sin3 θ) = (2cos3 θ – cos θ) tan θ.


Answer:

Consider R.H.S. = (2cos3 θ – cos θ) tan θ

= cos θ(2cos2 θ – 1)


= (2cos2 θ – 1)sin θ


Consider L.H.S. = (sin θ – 2 sin3 θ)


= sin θ(1 – 2 sin2 θ)


= sin θ[1 – 2(1 – cos2 θ)]


= sin θ [1 – 2 + 2cos2 θ]


= sin θ (2cos2 θ – 1)


Therefore, L.H.S. = R.H.S.


Hence, proved.




Exercise 8b
Question 1.

If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that (m2+ n2) = (a2 + b2).


Answer:

Given: a cos θ + b sin θ = m …….(1)


a sin θ – b cos θ = n …….(2)


Square equation (1) and (2) on both sides:


a2 cos2 θ + b2 sin2 θ + 2ab cos θ sin θ = m2 …….(3)


a2 sin2 θ + b2 cos2 θ – 2ab cos θ sin θ = n2 ……..(4)


Add equation (3) and (4):


[a2 cos2 θ + b2 sin2 θ + 2ab cos θ sin θ] + [a2 sin2 θ + b2 cos2 θ – 2ab cos θ sin θ] = m2 +n2


⇒ a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ) = m2 +n2


⇒ a2 + b2 = m2 + n2


Hence, proved.



Question 2.

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that

(x2 – y2) = (a2 – b2)


Answer:

Given: a sec θ + b tan θ = x …….(1)


a tan θ + b sec θ = y …….(2)


Square equation (1) and (2) on both sides:


a2 sec2 θ + b2 tan2 θ + 2ab sec θ tan θ = x2 …….(3)


a2 tan2 θ + b2 sec2 θ + 2ab sec θ tan θ = y2 ……..(4)


Subtract equation (4) from (3):


[a2 sec2 θ + b2 tan2 θ + 2ab sec θ tan θ] – [a2 tan2 θ + b2 sec2 θ + 2ab sec θ tan θ] = x2 – y2


⇒ a2 (sec2 θ – tan2 θ) + b2 (tan2 θ – sec2 θ) = x2 – y2


⇒ a2 – b2 = x2 – y2 (∵sec2 θ = 1 + tan2 θ)


Hence, proved.



Question 3.

If prove that


Answer:

Given: sin θ – cos θ = 1 …….(1)


cos θ + sin θ = 1 …….(2)


Square equation (1) and (2) on both sides:


sin2 θ + cos2 θ – 2 cos θ sin θ = 1 …….(3)


cos2 θ + sin2 θ + 2 cos θ sin θ = 1 ……..(4)


Add equation (3) and (4):


(sin2 θ + cos2 θ) + (sin2 θ + cos2 θ) = 1+1


(1) + (1) = 2


+ = 2


Hence, proved.



Question 4.

If (sec θ + tan θ) = m and (sec θ – tan θ) = n, show that mn = 1.


Answer:

Given: (sec θ + tan θ) = m …………….(1)

(sec θ – tan θ) = n …………….(2)


Multiply equation (1) and (2):


(sec θ + tan θ) (sec θ – tan θ) = mn


(sec2 θ – tan2 θ) = mn


1 = mn (∵ 1 + tan2 θ = sec2 θ)


Therefore, mn = 1.


Hence, proved.



Question 5.

If (cosec θ + cot θ) = m and (cosec θ – cot θ) = n, show that mn = 1


Answer:

Given: (cosec θ + cot θ) = m …………….(1)

(cosec θ – cot θ) = n …………….(2)


Multiply equation (1) and (2):


(cosec θ + cot θ) (cosec θ – cot θ) = mn


(cosec2 θ – cot2 θ) = mn


1 = mn (∵ 1 + cot2 θ = cosec2 θ)


Therefore, mn = 1.


Hence, proved.



Question 6.

If x = a cos3 θ and y = b sin3 θ, prove that


Answer:

Given: x = a cos3 θ

y = b sin3 θ


Consider L.H.S. =


=


= (cos3 θ)2/3 + (sin3 θ)2/3


= (cos2 θ + (sin2 θ)


= 1 = R.H.S.


Hence, proved.



Question 7.

If (tan θ + sin θ) = m and (tan θ – sin θ) = n, prove that (m2 – n2)2 = 16mn.


Answer:

Given: tan θ + sin θ = m …….(1)


tan θ – sin θ = n …….(2)


Square equation (1) and (2) on both sides:


tan2 θ + sin2 θ + 2 sin θ tan θ = m2 …….(3)


tan2 θ + sin2 θ – 2 sin θ tan θ = n2 ……..(4)


Subtract equation (4) from (3):


[tan2 θ + sin2 θ + 2 sin θ tan θ] – [tan2 θ + sin2 θ – 2 sin θ tan θ] = m2 – n2


⇒ 4sin θ tan θ = m2 – n2


Square both sides:


⇒ 16 sin2 θ tan2 θ = (m2 – n2)2


Therefore, (m2 – n2)2 = 16 sin2 θ tan2 θ


Also, 16mn = 16 × (tan θ + sin θ) × (tan θ – sin θ)


= 16 (tan2 θ – sin2 θ)


= 16[(sin2 θ/ cos2 θ) – sin2 θ]


= 16[sin2 θ ]


= 16 sin2 θ(sin2 θ/ cos2 θ)


= 16 sin2 θ tan2 θ


Therefore, (m2 – n2)2 = 16mn


Hence, proved.



Question 8.

If (cot θ + tan θ) = m and (sec θ – cos θ) = n, prove that (m2n) 2/3 – (mn2) 2/3 = 1.


Answer:

Given: (cot θ + tan θ) = m

(sec θ – cos θ) = n


Since, m = cot θ + tan θ


= (1/tan θ) + tan θ


=


= sec2 θ/tan θ


= 1/(sin θ cos θ)


Also, n = sec θ – cos θ


= (1/cos θ) – cos θ


= (1 – cos2 θ)/cos θ


= sin2 θ/cos θ


Now, consider the left – hand side:


(m2n) 2/3 – (mn2) 2/3 =


=


=


=


= (1 – sin2 θ)cos2 θ


= cos2 θ/ cos2 θ


= 1



Question 9.

If (cosec θ – sin θ) = a3 and (sec θ – cos θ) = b3, prove that a2 b2 (a2 + b2) = 1.


Answer:

Given: (cosec θ – sin θ) = a3

(sec θ – cos θ) = b3


Since, a3 = (cosec θ – sin θ)


= (1/sin θ) – sin θ


=


= cos2 θ/sin θ


Therefore, a2 = (a3)2/3 = (cos2 θ/sin θ)2/3


Also, b3 = sec θ – cos θ


= (1/cos θ) – cos θ


= (1 – cos2 θ)/cos θ


= sin2 θ/cos θ


Therefore, b2 = (b3)2/3 = (sin2 θ/cos θ)2/3


Now, consider the left – hand side:


a2 b2 (a2 + b2) =


=


=


= sin2 θ + cos2 θ


= 1 = R.H.S.


Hence, proved.



Question 10.

If (2 sin θ + 3 cos θ) = 2, prove that (3 sin θ – 2 cos θ) = ± 3.


Answer:

Given: 2 sin θ + 3 cos θ = 2

Consider (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 4sin2 θ + 9 cos2 θ + 12sin θ cos θ + 9 sin2 θ + 4 cos2 θ – 12 sin θ cos θ

⇒ (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 13sin2 θ + 13 cos2 θ

⇒ (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 13(sin2 θ + cos2 θ)

⇒ (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 13

⇒ (2)2 + (3 sin θ – 2 cos θ)2 = 13

⇒ (3 sin θ – 2 cos θ)2 = 13 – 4

⇒ (3 sin θ – 2 cos θ)2 = 9

⇒ (3 sin θ – 2 cos θ) = ± 3

Hence, proved.


Question 11.

If (sin θ + cos θ) = √2 cos θ, show that cot θ = (√2 + 1).


Answer:

Given: (sin θ + cos θ) = √2 cos θ

To show: cot θ = (√2 + 1)

Solution:

(sin θ + cos θ) = √2 cos θ

Divide both sides by sin θ,







Since



⇒ 1 + cot θ = √2 cot θ


⇒ 1 = √2 cot θ - cot θ

⇒ (√2 – 1)cot θ = 1


⇒ cot θ =


⇒ cot θ =


⇒ cot θ =


⇒ cot θ = √2 + 1


Question 12.

If (cos θ + sin θ) = √2sin θ, prove that (sin θ – cos θ) = √2cos θ.


Answer:

Given: cos θ + sin θ = √2sin θ

Consider (sin θ + cos θ)2 + (sin θ – cos θ)2 = sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ –

2 sin θ cos θ

⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2sin2 θ + 2 cos2 θ

⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2(sin2 θ + cos2 θ)

⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2

⇒ (√2sin θ)2 + (sin θ – cos θ)2 = 2

⇒ (sin θ – cos θ)2 = 2 – 2sin2 θ

⇒ (sin θ – cos θ)2 = 2(1 – sin2 θ)

⇒ (sin θ – cos θ)2 = 2(cos2 θ)

⇒ (sin θ – cos θ) = ± √2 cos θ

Hence, proved.


Question 13.

If sec θ + tan θ = p, prove that

(i)

(ii)

(iii)


Answer:

(i) Given: sec θ + tan θ = p ……(1)

Then, (sec θ + tan θ) × = p


= p


= p


⇒ sec θ – tan θ = (1/p) ……(2)


Adding equation (1) and (2), we get:


2 sec θ = p + (1/p)


⇒ sec θ =


Therefore, sec θ =


(ii) Given: sec θ + tan θ = p ……(1)


Then, (sec θ + tan θ) × = p


= p


= p


⇒ sec θ – tan θ = (1/p) ……(2)


Subtracting equation (2) from (1), we get:


2tan θ = p – (1/p)


⇒ tan θ =


(iii) Since sin θ = tan θ/sec θ


=


=


=



Question 14.

If tan A = n tan B and sin A = m sin B, prove that .


Answer:

Given: tan A = n tan B

Therefore,


Thus,

Squaring both sides, we get,

⇒ cot2 B = n2/tan2 A ……(1)


Also, sin A = m sin B


Therefore, sin B = sin A/m


Thus, cosec B = m/sin A


⇒ cosec2 B = m2/sin2 A ……(2)


Now, subtract equation (2) from (1):


cosec2 B – cot2 B =


⇒ 1 =


⇒ 1 =


⇒ m2 – n2 cos2 A = sin2 A


⇒ m2 – n2 cos2 A = 1 – cos2 A


⇒ m2 – 1 = n2 cos2 A – cos2 A


⇒ (n2 – 1)cos2 A = m2 – 1


⇒ cos2 A = (m2 – 1)/(n2 – 1)


Hence, proved.


Question 15.

If m = (cos θ – sin θ) and n = (cos θ + sin θ) then show that


Answer:

Given: m = (cos θ – sin θ)

n = (cos θ + sin θ)


Now, =


Multiply numerator and denominator by cos θ – sin θ :


Therefore, =


=


Now, =


Multiply numerator and denominator by cos θ + sin θ :


Therefore, =


=


Now, consider =


=


=


=


Divide numerator and denominator by cos θ:


=


=


Therefore, =


Hence, proved.




Exercise 8c
Question 1.

Write the value of (1 – sin2θ) sec2 θ.


Answer:

Consider (1 – sin2θ) sec2 θ = (cos2 θ) × sec2 θ

(∵ sin2 θ + cos2 θ = 1)


= 1



Question 2.

Write the value of (1 – cos2θ) cosec2 θ.


Answer:

Consider (1 – cos2θ) cosec2 θ = (sin2 θ) × cosec2 θ

(∵ sin2 θ + cos2 θ = 1)


= 1



Question 3.

Write the value of (1 + tan2θ) cos2 θ.


Answer:

Consider (1 + tan2θ) cos2 θ = (sec2 θ) × cos2 θ

(∵ 1 + tan2 θ = sec2 θ)


= 1



Question 4.

Write the value of (1 + cot2θ) sin2 θ.


Answer:

Consider (1 + cot2θ) × sin2 θ = (cosec2 θ) × sin2 θ

(∵ 1 + cot2 θ = cosec2 θ)


= 1



Question 5.

Write the value of


Answer:

Consider sin2 θ +

= (sin2θ) + (1/sec2 θ)


(∵ 1 + tan2 θ = sec2 θ)


= (sin2θ) + (cos2θ)


(∵ sin2 θ + cos2 θ = 1)


= 1



Question 6.

Write the value of .


Answer:

Consider cot2 θ –

= (cot2 θ) – (cosec2 θ)


= – (cosec2 θ – cot2 θ)


(∵ 1 + cot2 θ = cosec2 θ)


= – 1



Question 7.

Write the value of sin θ cos (90° – θ) + cos θ sin (90° – θ).


Answer:

Consider sin θ cos (90° – θ) + cos θ sin (90° – θ) = sin θ sin θ + cos θ cos θ

= sin2 θ + cos2 θ


(∵ sin2 θ + cos2 θ = 1)


= 1



Question 8.

Write the value of cosec2 (90° – θ) – tan2 θ.


Answer:

Consider cosec2 (90° – θ) – tan2 θ = sec2 θ – tan2 θ

(∵ 1 + tan2 θ = sec2 θ)


= 1



Question 9.

Write the value of sec2 θ (1 + sin θ)(1 – sin θ).


Answer:

Consider sec2 θ (1 + sin θ)(1 – sin θ) = sec2 θ (1 – sin2 θ)

= sec2 θ cos2 θ


(∵ sin2 θ + cos2 θ = 1)


= 1



Question 10.

Write the value of cosec2 θ (1 + cos θ)(1 – cos θ).


Answer:

Consider cosec2 θ (1 + cos θ)(1 – cos θ) = cosec2 θ (1 – cos2 θ)

= cosec2 θ sin2 θ


(∵ sin2 θ + cos2 θ = 1)


= 1



Question 11.

Write the value of sin2 θ cos2 θ (1 + tan2 θ)(1 + cot2 θ).


Answer:

Consider sin2 θ cos2 θ (1 + tan2 θ)(1 + cot2 θ)

= sin2 θ cos2 θ (sec2 θ)(cosec2 θ) (∵ 1 + cot2 θ = cosec2 θ and 1 + tan2 θ = sec2 θ)


= sin2 θ (cosec2 θ) cos2 θ (sec2 θ)


= 1 × 1


= 1



Question 12.

Write the value of (1 + tan2 θ)(1 + sin θ)(1 – sin θ).


Answer:

Consider (1 + tan2 θ)(1 + sin θ)(1 – sin θ)

= (1 + tan2 θ)(1 – sin2 θ) (∵ sin2 θ + cos2 θ = 1 and 1 + tan2 θ = sec2 θ)


= (sec2 θ) (cos2 θ)


= 1



Question 13.

Write the value of 3 cot2 θ – 3 cosec2 θ.


Answer:

Consider 3 cot2 θ – 3 cosec2 θ = – 3(cosec2 θ – cot2 θ)

= – 3(1) (∵ 1 + cot2 θ = cosec2 θ)


= – 3



Question 14.

Write the value of .


Answer:

Consider 4 tan2 θ – = 4 tan2 θ – 4 sec2 θ

= 4(tan2 θ – sec2 θ)


= 4( – 1) (∵1 + tan2 θ = sec2 θ)


= – 4



Question 15.

Write the value of


Answer:

Consider = (∵1 + tan2 θ = sec2 θ and 1 + cot2 θ = cosec2 θ)

= 1



Question 16.

If sin θ = 1/2, write the value of (3 cot2 θ + 3).


Answer:

Give: sin θ = 1/2

Therefore cosec θ = 1/sin θ


= 2


Consider 3 cot2 θ + 3 = 3 (cot2 θ + 1)


= 3 cosec2 θ (∵ 1 + cot2 θ = cosec2 θ)


= 3 (2)2


= 3 × 4


= 12



Question 17.

If cos θ = 2/3, write the value of (4 +4 tan2 θ).


Answer:

Give: cos θ = 2/3

Therefore sec θ = 1/cos θ


= 3/2


Consider 4 tan2 θ + 4 = 4 (tan2 θ + 1)


= 4 sec2 θ (∵ 1 + tan2 θ = sec2 θ)


= 4 (3/2)2


= 4 × (9/4)


= 9



Question 18.

If cos θ = 7/25, write the value of (tan θ + cot θ).


Answer:

Given: cos θ = 7/25

Therefore sin θ = √(1 – cos2 θ)


= √(1 –(49/625))


= √[(625 – 49)/625]


= √(576/625)


= 24/25


Thus, tan θ = sin θ/cos θ = (24/25)/(7/25)


= 24/7


Also, cot θ = 1/tan θ = 7/24


Therefore, tan θ + cot /θ = (24/7) + (7/24)


= (576 + 49)/(24 × 7)


= 625/168



Question 19.

If cos θ = 2/3, write the value of .


Answer:

Given: cos θ = 2/3

Thus, sec θ = 1/cos θ


= 3/2


Now, consider =


= [(1/2)/(5/2)]


= 1/5



Question 20.

If 5 tan θ = 4, write the value of .


Answer:

Given: 5 tan θ = 4

Therefore, tan θ = 4/5


Now, consider and divide numerator and denominator by cos θ:


=


=


=


= (1/5)/(9/5)


= 1/9



Question 21.

If 3 cot θ = 4, write the value of .


Answer:

Given: 3 cot θ = 4

Therefore, cot θ = 4/3


Therefore, tan θ = 3/4


Now, consider and divide numerator and denominator by cos θ:


=


=


=


= (11/4)/(13/4)


= 11/13



Question 22.

If cot θ = 1/√3 write the value of


Answer:

Given: cot θ = 1/√3

Thus, tan θ = 1/cot θ = √3


Therefore sec θ = √(1 + tan2 θ)


= √(1 + 3)


= √(4)


= 2


Therefore sec2 θ = 4


Now, cos2 θ = 1/sec2 θ = 1/4


So, consider =


=


=


= (3/4)/(5/4)


= 3/5



Question 23.

If tan θ = 1/√5write the value of


Answer:

Given: tan θ = 1/√5


∴ tan2 θ = 1/5


Consider =


Multiply numerator and denominator by sin θ:


=


=


= 4/6


= 2/3



Question 24.

If cot A = 4/3 and (A + B) = 90°, what is the value of tan B?


Answer:

We are given that: cot A = 4/3


⇒ tan (90° – A) = 4/3


Since A + B = 90°, therefore B = 90° – A


Therefore, tan (90° – A) = tan B = 4/3



Question 25.

If cos B = 3/5 and (A + B) = 90°, find the value of sin A.


Answer:

We are given that: cos B = 3/5


⇒ sin (90° – B) = 3/5


Since A + B = 90°, therefore A = 90° – B


Therefore, sin (90° – B) = sin A = 3/5



Question 26.

If √3sin θ = cos θ and θ is an acute angle, find the value of θ.


Answer:

We are given that: √3sin θ = cos θ


∴sin θ /cos θ = 1/√3


⇒ tan θ = 1/√3


⇒ tan θ = tan 30°


On comparing both sides, we get,


θ = 30°



Question 27.

Write the value of tan 10° tan 20° tan 70° tan 80°.


Answer:

Consider tan 10° tan 20° tan 70° tan 80°

= tan 10° tan 20° tan (90° – 20°) tan (90° – 10°)


= tan 10° tan 20° cot 0° cot 10°


= tan 10° cot 10° tan 20° cot 20°


= 1 × 1


= 1



Question 28.

Write the value of tan 1° tan 2° ... tan 89°.


Answer:

Consider tan 1° tan 2°… tan 88° tan 89°

= tan 1° tan 2°… tan 44° tan 45° tan 46° …tan 88° tan 89°


= tan 1° tan 2°…tan 44° tan 45° tan (90° – 44° ) …tan (90° – 2°) tan (90° – 1°)


= tan 1° tan 2° … tan 44 ° tan 45° cot 44° …cot 2° cot 1°


= tan 1° cot 1° tan 2° cot 2°… tan 44 ° cot 44 ° tan 45°


= 1 × 1 × ...× 1


= 1



Question 29.

Write the value of cos 1° cos 2° ... cos 180°.


Answer:

Consider cos 1° cos 2° cos 3° ... cos 180°


= cos 1° cos 2° cos 3° …× cos 90° × … × cos 180°


= cos 1° cos 2° cos 3° ... × 0 × … × cos 180°


= 0 (∵ cos 90° = 0)



Question 30.

If tan A = 5/12, find the value of (sin A + cos A) sec A.


Answer:

Given: tan A = 5/12

Consider (sin A + cos A) sec A = (sin A + cos A)(1/cos A)


= (sin A/cos A) + (cos A/cos A)


= tan A + 1


= (5/12) + 1


= 17/12



Question 31.

If sin θ = cos (θ – 45°), where θ is acute, find the value of θ.


Answer:

We are given that: sin θ = cos (θ – 45°)


∴We can rewrite it as: cos (90° – θ ) = cos (θ – 45°)


On comparing both sides, we get,


90° – θ = θ – 45°


⇒ θ + θ = 90° + 45°


⇒ 2θ = 135°


⇒ θ = 65.5°



Question 32.

Find the value of .


Answer:

Consider – 4 cos 50° cosec 40°


= – 4 cos 50° cosec (90° – 40°)


= – 4 cos 50° sec 50°


= 1 + 1 – 4


= – 2



Question 33.

Find the value of sin 48° sec 42° + cos 48° cosec 42°.


Answer:

Consider sin 48° sec 42° + cos 48° cosec 42°


= sin 48° sec (90° – 48°) + cos 48° cosec (90° – 48°)


= sin 48° cosec 48° + cos 48° sec 48°


= 1 + 1


= 2



Question 34.

If x = a sin θ and y = b cos θ, write the value of (b2x2 + a2y2).


Answer:

Given: x = a sin θ

y = b cos θ


Then b2x2 + a2y2 = b2(a sin θ)2 + a2(b cos θ)2


= a2b2 sin2 θ + a2 b2 cos2 θ


= a2b2 (sin2 θ + cos2 θ)


= (a2b2) × 1


= a2b2



Question 35.

If 5x = sec θ and 5/x = tan θ, find the value of 5


Answer:

Given: 5x = sec θ, and 5/x = tan θ


Consider 5(x2 – (1/ x2))


=


=


= (1/5) [sec2 θ – tan2 θ]


= (1/5)[1]


= 1/5 (∵ sec2 x – tan2 x = 1)



Question 36.

If cosec θ = 2x and cot θ = 2/x find the value of 2.


Answer:

Given: 2x = cosec θ , and 2/x = cot θ


Consider 2(x2 – (1/ x2)) =



=


= (1/2)(cosec2 θ – cot2 θ)


= 1/2 (∵ cosec2 x – cot2 x = 1)



Question 37.

If sec θ + tan θ = x, find the value of sec θ.


Answer:

Given: sec θ + tan θ = x ……(1)

Then, (sec θ + tan θ) × = x


= x


= x


⇒ sec θ – tan θ = (1/x) ……(2)


Adding equation (1) and (2), we get:


2 sec θ = x + (1/x)


= (x2 + 1)/x


⇒ sec θ = (x2 + 1)/2x


Therefore, sec θ = (x2 + 1)/2x



Question 38.

Find the value of .


Answer:

Consider

=


=


=


=


= cot 60°


= 1/√3



Question 39.

If sin θ = x, write the value of cot θ.


Answer:

Given: sin θ = x


Therefore, cosec θ = 1/x


Using the identity 1 + cot2 θ = cosec2 θ, we get


cot θ = √(cosec2 θ – 1)


= √((1/x)2 – 1)


=


=



Question 40.

If sec θ = x, write the value of tan θ.


Answer:

Given: sec θ = x

Using the identity 1 + tan2 θ = sec2 θ, we get


tan θ = √(sec2 θ – 1)


= √(x2 – 1)




Multiple Choice Questions (mcq)
Question 1.

Choose the correct answer:



A. 2/√3

B. √3/2

C. √3

D. 1


Answer:

sec 30° = 1/cos 30°


= 1/(√3/2)


= 2/√3


cosec 60° = 1/sin 60°


= 1/(√3/2)


= 2/√3


Therefore, sec 30° /cosec 30° = (2/√3)/(2/√3)


= 1


Question 2.

Choose the correct answer:


A. 0

B. 1

C. 2

D. none of these


Answer:

=


=


= 1 + 1


= 2


Question 3.

Choose the correct answer:

tan 10° tan 15° tan 75° tan 80° = ?
A. √3

B. 1/√3

C. – 1

D. 1


Answer:

Consider tan 10° tan 15° tan 75° tan 80°


= tan 10° tan 80° tan 15° tan 75°


= tan 10° tan (90 – 10)° tan 15° tan (90 – 15)°


= (tan 10° cot 10°) (tan 15° cot 15°)


= (1) × (1) = 1


Question 4.

Choose the correct answer:

tan 5° tan 25° tan 30° tan 65° tan 85° = ?
A. √3

B. 1/√3

C. 1

D. none of these


Answer:

Consider tan 5° tan 25° tan 30° tan 65° tan 85°


= tan 5° tan 85° tan 25° tan 65° tan 30°


= tan 5° tan (90 – 5)° tan 25° tan (90 – 25)° tan 30°


= (tan 5° cot 5°) (tan 25° cot 25°) tan 30°


= (1) × (1) × (1/√3)


= 1/√3


Question 5.

Choose the correct answer:

cos 1° cos 2° cos 3° ... cos 180° = ?
A. – 1

B. 1

C. 0

D. 1/2


Answer:

Consider cos 1° cos 2° cos 3° ... cos 180°

= cos 1° cos 2° cos 3° …× cos 90° × … cos 180°


= cos 1° cos 2° cos 3° ... × 0 × cos 180°


= 0 (∵ cos 90° = 0)


Question 6.

Choose the correct answer:

A. 3/2

B. 2/3

C. 2

D. 3


Answer:

Consider =


=


=


= (2 + 1)/(3 – 1)


= 3


Question 7.

Choose the correct answer:

sin 47° cos 43° + cos 47° sin 43° = ?
A. sin 4°

B. cos 4°

C. 1

D. 0


Answer:

Consider (sin 47° cos 43°) + (cos 47° sin 43°)

= (sin 47° cos (90 – 47)°) + (cos 47° sin (90 – 47)°)


= sin2 47° + cos2 47°


= 1


Question 8.

Choose the correct answer:

sec 70° sin 20° + cos 20° cosec 70° = ?
A. 0

B. 1

C. – 1

D. 2


Answer:

Consider (sec 70° sin 20°) + (cos 20° cosec 70°)


= (sec (90 – 20)° sin 20°) + (cos 20° cosec (90 – 20)°)


= (cosec 70° sin70°) + (cos 20° sec 20°)


= 1 + 1 (∵ cosec θ = 1/sin θ and sec θ = 1/cos θ )


= 2


Question 9.

Choose the correct answer:

If sin 3A = cos (A – 10°) and ∠A is acute then ∠A = ?
A. 35°

B. 25°

C. 20°

D. 45°


Answer:

We are given that: sin 3A = cos (A – 10°)


∴ We can rewrite it as: cos (90° – 3A) = cos (A – 10°)


On comparing both sides, we get,


90° – 3A = A – 10°


⇒ A + 3A = 90° + 10°


⇒ 4A = 100°


⇒ A = 25°


Question 10.

Choose the correct answer:

If sec 4A = cosec (A – 10°) and 4A is acute then ∠A = ?
A. 20°

B. 30°

C. 40°

D. 50°


Answer:

We are given that: sec 4A = cosec (A – 10°)

∴We can rewrite it as: cosec (90° – 4A) = cosec (A – 10°)


On comparing both sides, we get,


90° – 4A = A – 10 °


⇒ A + 4A = 90° + 10°


⇒ 5A = 100°


⇒ A = 20°


Question 11.

Choose the correct answer:

If A and B are acute angles such that sin A = cos B then (A + B) = ?
A. 45°

B. 60°

C. 90°

D. 180°


Answer:

We are given that: sin A = cos B


∴We can rewrite it as: sin A = sin(90° – B)


On comparing both sides, we get,


90° – B = A


⇒ A + B = 90°


Question 12.

Choose the correct answer:

If cos (α + β) = 0 then sin (α – β) = ?
A. sinα

B. cosβ

C. sin 2α

D. cos 2β


Answer:

We are given that: cos (α + β) = 0


∴We can rewrite it as: cos (α + β) = cos (90° – 0°)


On comparing both sides, we get,


(α + β) = 0 = 90°


⇒ α = 90° – β


Therefore, sin (α – β) = sin (90° – β – β)


= sin (90° – 2β)


= cos 2β


Question 13.

Choose the correct answer:

sin (45° + θ) – cos (45° – θ) = ?
A. 2 sin θ

B. 2 cos θ

C. 0

D. 1


Answer:

Consider sin (45° + θ) – cos (45° – θ) = sin (45° + θ) – sin (90° – (45° – θ))


= sin (45° + θ) – sin (45° + θ)


= 0


Question 14.

Choose the correct answer:

sec2 10° – cot2 80° = ?
A. 1

B. 0

C. 3/2

D. 1/2


Answer:

sec2 10° – cot2 80° = sec2 10° – tan2 (90° – 80°)


= sec2 10° – tan2 10°


= 1


Question 15.

Choose the correct answer:

cosec2 57° – tan2 33° = ?
A. 0

B. 1

C. – 1

D. 2


Answer:

cosec2 57° – tan2 33° = cosec2 57° – cot2 (90° – 33°)


= cosec2 57° – cot2 57°


= 1


Question 16.

Choose the correct answer:

A. 2

B. 1/2

C. 2/3

D. 3/2


Answer:

Consider =


=


= (2tan2 30° × 1)/1


= 2tan2 30°


= 2(1/√3)2


= 2/3


Question 17.

Choose the correct answer:

A. 0

B. 1

C. 2

D. 3


Answer:

Consider + sin2 63° + cos 63°sin 27°


= + sin2 63° + cos 63° sin (90° – 63°)


= + sin2 63° + cos 63° cos 63°


= (1/1) + (sin2 63° + cos2 63°)


= 1 + 1


= 2


Question 18.

Choose the correct answer:


A. 0

B. 1

C. – 1

D. none of these


Answer:

Consider – (cos2 20° + cos2 70°)


= – (cos2 20° + cos2 (90° – 70°))


= (tan θ × cot θ) + (tan 50°/tan 50°) – (cos2 20° + sin2 20°)


= 1 + 1 – 1


= 1


Question 19.

Choose the correct answer:


A. √3
B. 1/3
C. 1/√3
D. 2/√3


Answer:

Consider


=


=


=


= 1/√3


Question 20.

Choose the correct answer:

If 2 sin 2θ = √3 then θ = ?
A. 30°

B. 45°

C. 60o

D. 90o


Answer:

Given: 2 sin 2θ = √3

Therefore, sin 2θ = √3/2


⇒ sin 2θ = sin 60°


On comparing both sides, we get:


2θ = 60°


⇒ θ = 60°/2


⇒ θ = 30°


Question 21.

Choose the correct answer:

If 2 cos 3θ = 1 then θ = ?
A. 10°

B. 15°

C. 20°

D. 30°


Answer:

Given: 2 cos 3θ = 1

Therefore, cos 3θ = 1/2


⇒ cos 3θ = cos 60°


On comparing both sides, we get:


3θ = 60°


⇒ θ = 60°/3


⇒ θ = 20°


Question 22.

Choose the correct answer:

If √3tan 2θ – 3 = 0 then θ = ?
A. 15°

B. 30°

C. 45°

D. 60°


Answer:

Given√3tan 2θ – 3 = 0

Therefore, √3tan 2θ = 3


⇒ tan 2θ = 3/√3


⇒ tan 2θ = √3


⇒ tan 2θ = tan 60°


On comparing both sides, we get:


2θ = 60°


⇒ θ = 60°/2


⇒ θ = 30°


Question 23.

Choose the correct answer:

If tan x = 3 cot x then x = ?
A. 45°

B. 60°

C. 30°

D. 15°


Answer:

Given: tan x = 3 cot x

⇒ tan x/cot x = 3


Since, cot x = 1/tan x


Therefore, tan x/cot x = 3 ⇒ tan2 x = 3


Taking square root on both sides:


⇒ tan x = √3


⇒ tan x = tan 60°


Comparing both sides:


⇒ x = 60°


Question 24.

Choose the correct answer:

If x tan 45° cos 60° = sin 60° cot 60° then x = ?
A. 1

B. 1/2

C. 1/√2

D.√3


Answer:

Given: x tan 45° cos 60° = sin 60° cot 60°

⇒ x × 1 × (1/2) = (√3/2) × (1/√3)


⇒ x/2 = 1/2


⇒ x = 1


Question 25.

Choose the correct answer:

If tan245° – cos230° = x sin 45° cos 45° then x = ?
A. 2

B. – 2

C. 1/2

D. – 1/2


Answer:

Given: tan245° – cos230° = x sin 45° cos 45°

⇒ (1)2 – (√3/2)2 = x × (1/√2) × (1/√2)


⇒ 1 – (3/4) = x × (1/2)


⇒ x/2 = 1 –(3/4)


⇒ x/2 = 1/4


⇒ x = 2/4


⇒ x = 1/2


Question 26.

Choose the correct answer:

sec260° – 1 = ?
A. 2

B. 3

C. 4

D. 0


Answer:

sec2 60° – 1 = (1/cos2 60°) – 1

= [1/(1/2)2] – 1


= [1/(1/4)] – 1


= 4 – 1


= 3


Question 27.

Choose the correct answer:

(cos 0° + sin 30° + sin 45°) (sin 90° + cos 60° – cos 45°) = ?
A. 5/6

B. 5/8

C. 3/5

D. 7/4


Answer:

Consider (cos 0° + sin 30° + sin 45°) (sin 90° + cos 60° – cos 45°)

= [1 + (1/2) + (1/√2)] × [1 + (1/2) – (1/√2)]


= [(3/2) + (1/√2)] × [(3/2) – (1/√2)]


= (3/2)2 – (1/√2)2


= (9/4) – (1/2)


= (9 – 2)/4


= 7/4


Question 28.

Choose the correct answer:

sin2 30° + 4 cot2 45° – sec2 60° = ?
A. 0

B. 1/4

C. 4

D. 1


Answer:

Consider sin2 30° + 4 cot2 45° – sec2 60° = (1/2)2 + 4(1)2 – (2)2

= (1/4) + 4 – 4


= 1/4


Question 29.

Choose the correct answer:

3 cos260° + 2 cot230° – 5 sin245° = ?
A. 13/6

B. 17/4

C. 1

D.4


Answer:

Consider 3 cos260° + 2 cot230° – 5 sin245° = 3 (1/2)2 + 2(√3)2 – 5(1/√2)2

= 3(1/4) + 2(3) – 5(1/2)


= (3/4) + 6 – (5/2)


= (3 + 24 – 10)/4


= 17/4


Question 30.

Choose the correct answer:
cos2 30° cos2 45° + 4 sec2 60° + 2cos2 90° – 2 tan2 60° = ?
A.

B.

C.

D.


Answer:

Consider cos2 30° cos2 45° + 4 sec2 60° + 2cos2 90° – 2 tan2 60°


Question 31.

Choose the correct answer:

If cosec θ = √10 then sec θ = ?
A. 3/√10

B. √10/3

C.1/√10

D. 2/√10


Answer:

Given: cosec θ = √10


Therefore, sin θ = 1/√10


Since, sin2 θ + cos2 θ = 1


Therefore, cos θ = √(1 – sin2 θ)


=


=


=


=


Therefore, sec θ = 1/cos θ =


Question 32.

Choose the correct answer:

If tan θ = 8/15, then cosec θ = ?
A.17/8

B. 8/17

C. 17/15

D.15/17


Answer:

Given: tan θ = 8/15 = Perpendicular/Base


On comparing, we get:


Perpendicular = 8


Base = 15


Therefore, (Hypotenuse)2 = (Perpendicular)2 + (Base)2


= 64 + 225


= 289


Therefore, hypotenuse = √289


= 17


Therefore cosec θ = Hypotenuse/Perpendicular


= 17/8


Question 33.

Choose the correct answer:

If sin θ = a/b, then cos θ = ?
A.

B.

C.

D. b/a


Answer:

Given: sin θ = a/b


Since, sin2 θ + cos2 θ = 1


Therefore, cos θ = √(1 – sin2 θ)


=


=


Question 34.

Choose the correct answer:

If tan θ = √3, then sec θ = ?
A. 2/√3

B. √3/2

C. 1/2

D. 2


Answer:

Given: tan θ = √3 = Perpendicular/Base


On comparing, we get:


Perpendicular = √3


Base = 1


Therefore, (Hypotenuse)2 = (Perpendicular)2 + (Base)2


= 3 + 1


= 4


Therefore, hypotenuse = √4


= 2


Therefore sec θ = Hypotenuse/Base


= 2/1 = 2


Question 35.

Choose the correct answer:

If sec θ = 25/7, then sin θ = ?
A. 7/24

B.24/7

C. 24/25

D. none of these


Answer:

Given: sec θ = 25/7


Therefore, cos θ = 1/sec θ = 7/25 = Base/Hypotenuse


Therefore, on comparing, Base = 7 and Hypotenuse = 25


In a right – angled triangle, (Hypotenuse)2 = (Perpendicular)2 + (Base)2


625 = (Perpendicular)2 + 49


Therefore, Perpendicular = √(625 – 49) = √(576)


= 24


Therefore sin θ = Perpendicular/Hypotenuse


= 24/25


Question 36.

Choose the correct answer:

If sin θ = 1/2, then cot θ = ?
A. 1/√3

B. √3

C. √3/2

D. 1


Answer:

Given: sin θ = 1/2 = Perpendicular/Hypotenuse


Therefore, on comparing, Perpendicular = 1 and Hypotenuse = 2


In a right – angled triangle, (Hypotenuse)2 = (Perpendicular)2 + (Base)2


4 = 1+ (Base)2


Therefore, Base = √(4 – 1)


= √(3)


Therefore cot θ = Base/ Perpendicular


= √3/1


= √3


Question 37.

Choose the correct answer:

If cos θ = 4/5 then tan θ = ?
A. 3/4

B. 4/3

C. 3/5

D. 5/3


Answer:

Given: cos θ = 4/5 = Base/Hypotenuse


Therefore, on comparing, Base = 4 and Hypotenuse = 5


In a right – angled triangle, (Hypotenuse)2 = (Perpendicular)2 + (Base)2


25 = (Perpendicular)2 + 16


Therefore, Perpendicular = √(25 – 16) = √(9)


= 3


Therefore tan θ = Perpendicular/Base


= 3/4


Question 38.

Choose the correct answer:

If 3x = cosec θ and 3/x = cot θ, then
A. 1/27

B.1/81

C. 1/3

D.1/9


Answer:

Given: 3x = cosec θ , and 3/x = cot θ


Consider 3(x2 – (1/ x2)) =



=


= (1/3)(cosec2 θ – cot2 θ)


= 1/3 (∵ cosec2 x – cot2 x = 1)


Question 39.

Choose the correct answer:

If 2x = sec A and 2/x = tan A then
A.

B.

C.

D.


Answer:

Given: 2x = sec A, and 2/x = tan A


Consider 2(x2 – (1/ x2))


=


=


= (1/2) [sec2 A – tan2 A]


= (1/2)[1]


= 1/2 (∵ sec2 x – tan2 x = 1)


Question 40.

Choose the correct answer:

If tan θ = 4/3, then (sin θ + cos θ) = ?
A. 7/3

B. 7/4

C. 7/5

D. 5/7


Answer:

Given: tan θ = 4/3 = Perpendicular/Base


Therefore, (Hypotenuse)2 = (Perpendicular)2 + (Base)2


= 16 + 9


= 25


Therefore, hypotenuse = √25


= 5


Therefore sin θ = Perpendicular/Hypotenuse


= 4/5


Also, cos θ = Base/Hypotenuse


= 3/5


Thus, sin θ + cos θ = (4/5) + (3/5)


= 7/5


Question 41.

Choose the correct answer:

If (tan θ + cot θ) = 5 then (tan2 θ + cot2 θ) = ?
A.27

B. 25

C. 24

D. 23


Answer:

Given: tan θ + cot θ = 5


Squaring both sides, we get:


tan2 θ + cot2 θ + 2 tan θ cot θ = 25


tan2 θ + cot2 θ = 25 – 2 tan θ cot θ


= 25 – 2


= 23


Question 42.

Choose the correct answer:

If (cos θ + sec θ) = 5/2, then (cos2 θ + sec2 θ) = ?
A. 21/4

B. 17/4

C. 29/4

D. 33/4


Answer:

Given: cos θ + sec θ = 5/2


Squaring both sides, we get:


cos2 θ + sec2 θ + 2 cos θ sec θ = 25/4


cos2 θ + sec2 = (25/4) – 2 cos θ sec θ


= 25/4 – 2


= (25 – 8)/4


= 17/4


Question 43.

Choose the correct answer:


If
A. – 2/3

B. – 3/4

C. 2/3

D. 3/4


Answer:

Given: tan θ = 1/√7


∴ tan2 θ = 1/7


Consider =


Multiply numerator and denominator by sin θ:


=


=


= 6/8


= 3/4


Question 44.

Choose the correct answer:

If
A. 1/7

B. 5/7

C. 3/7

D. 5/14


Answer:

Given: 7tan θ = 4


Therefore tan θ = 4/7


Consider and divide numerator and denominator by cos θ:


=


=


=


= 1/7


Question 45.

Choose the correct answer:

If
A. 1/3

B. 3

C. 1/9

D. 9


Answer:

Given: 3cot θ = 4


Therefore cot θ = 4/3


Consider and divide numerator and denominator by sin θ:


=


=


=


= 9


Question 46.

Choose the correct answer:

If tan θ = a/b, then
A.

B.

C.

D.


Answer:

Given: tan θ = a/b


Consider and divide numerator and denominator by cos θ:


=


=


=


Question 47.

Choose the correct answer:

If sin A + sin2A = 1 then cos2A + cos4A = ?
A. 1/2

B.1

C. 2

D. 3


Answer:

Given: sin A + sin2 A = 1


Therefore sin A = 1 – sin2 A = cos2 A ……(1)


Now, consider cos2A + cos4A = cos2 A(1 + cos2A)


Put the value of cos2A in the above equation:


Therefore, cos2A + cos4A = cos2 A(1 + cos2A)


= (1 – sin2 A)(1+1 – sin2 A)


Again, from equation (1), we have 1 – sin2 A = sin A. So, put the value of sin A in the above equation:


Therefore, cos2A + cos4A = (sinA)(1+ sinA)


= sin A + sin2 A


= 1 (given)


Therefore, cos2A + scos4A = 1


Question 48.

Choose the correct answer:

If cos A + cos2A = 1 then sin2A + sin4A = ?
A. 1

B. 2

C. 4

D. 3


Answer:

Given: cos A + cos2 A = 1


Therefore cos A = 1 – cos2 A = sin2 A ……(1)


Now, consider sin2A + sin4A = sin2 A(1 + sin2A)


Put the value of sin2A in the above equation:


Therefore, sin2A + sin4A = sin2 A(1 + sin2A)


= (1 – cos2 A)(1+1 – cos2 A)


Again, from equation (1), we have 1 – cos2 A = cos A. So put the value of cos A in the above equation:


Therefore, sin2A + sin4A = (cosA)(1+ cosA)


= cos A + cos2 A


= 1 (given)


Therefore, sin2A + sin4A = 1


Question 49.

Choose the correct answer:


A. sec A + tan A

B. sec A – tan A

C. sec A tan A

D. none of these


Answer:

Consider and rationalize:


=


=


=


=


=


= sec A – tan A


Question 50.

Choose the correct answer:


A. cosec A – cot A

B. cosec A + cot A

C. cosec A cot A

D. none of these


Answer:

Consider and rationalize:


=


=


=


=


=


= cosec A + cot A


Question 51.

Choose the correct answer:

If tan θ = a/b, then ?
A.

B.

C.

D.


Answer:

Given: tan θ = a/b


Consider and divide numerator and denominator by cos θ:


=


=


=


Question 52.

Choose the correct answer:
(cosec θ – cot θ)2 = ?
A.

B.

C.

D. none of these


Answer:

Consider (cosec θ – cot θ)2 =


=


=


=


=


=


= R.H.S.


Hence, proved.


Question 53.

Choose the correct answer:

(sec A + tan A)(1 – sin A) = ?
A. sin A

B. cos A

C. sec A

D. cosec A


Answer:

Consider (sec A + tan A)(1 – sin A) =


=


=


=


= cos A



Formative Assessment (unit Test)
Question 1.


A.

B. 4

C. 6

D. 5


Answer:

Consider + 3 tan2 56° tan2 34°


= + 3 tan2 56° tan2 (90° – 56°)


= + 3 tan2 56° cot2 56°


= (1/1) + 3(1)


= 1 + 3


= 4


Question 2.

The value of (sin2 30° cos2 45° + 4 tan2 30°+ (1/2) sin2 90o + (1/8)cot2 60o) = ?
A. 3/8

B. 5/8

C. 6

D. 2


Answer:

Consider (sin2 30° cos2 45° + 4 tan2 30°+ (1/2) sin2 90o + (1/8) cot2 60o)


= [(1/2)2 × (1/√2)2 + 4 (1/√3)2 + (1/2) × (1)2 + (1/8)(1/√3)2]


= [(1/4) × (1/2)] + [(4/3)] + (1/2) + (1/24)


= (1/8) + (4/3) + (1/2) + (1/24)


= (3 + 32 + 12 + 1)/24


= 48/24


= 2


Question 3.

If cos A + cos2 A = 1 then (sin2A + sin4A) = ?
A. 1/2

B. 2

C. 1

D. 4


Answer:

Given: cos A + cos2 A = 1


Therefore cos A = 1 – cos2 A = sin2 A ……(1)


Now, consider sin2A + sin4A = sin2 A(1 + sin2A)


Put the value of sin2A in the above equation:


Therefore, sin2A + sin4A = sin2 A(1 + sin2A)


= (1 – cos2 A)(1+1 – cos2 A)


Again, from equation (1), we have 1 – cos2 A = cos A. So put the value of cos A in the above equation:


Therefore, sin2A + sin4A = (cosA)(1+ cosA)


= cos A + cos2 A


= 1 (given)


Therefore, sin2A + sin4A = 1


Question 4.

If sin θ = √3/2, then (cosec θ + cot θ) = ?
A. (2 + √3)

B. 2√3

C. √2

D.√3


Answer:

Given: sin θ = √3/2


Therefore, cosec θ = 1/sin θ = 2/√3


cos θ = √(1 – sin2 θ)


= √(1 – (3/4))


= √(1/4)


= 1/2


cot θ = cos θ/sin θ = (1/2)/√3/2


= 1/√3


Therefore, (cosec θ + cot θ) = (2/√3) + (1/√3)


= 3/√3


= √3


Question 5.

If cot A = 4/5, prove that


Answer:

Given: cot A = 4/5


Consider and divide numerator and denominator by sin A:


=


=


=


= 9



Question 6.

If 2x = sec A and 2/x = tan A, prove that .


Answer:

Given: 2x = sec A, and 2/x = tan A

Therefore,
(2x)2 = sec2A

⇒ 4x2 = sec2A [1]

and


[2]


On subtracting [2] from [1], we get

(∵ sec2 x – tan2 x = 1)


Question 7.

If √3 tan θ = 3 sin θ, prove that (sin2 θ – cos2 θ) = 1/3.


Answer:

Given: √3 tanθ = 3 sinθ






Also, we know,




Now, we need to prove that:


sin2θ – cos2θ = 1/3


⇒ L.H.S =


⇒ L.H.S =


⇒ L.H.S = 1/3



Question 8.

Prove that .


Answer:

Consider L.H.S. =


=


=


= 1/1


= 1


= R.H.S.


Hence, proved.



Question 9.

If 2 sin 2θ = √3, prove that θ = 30°.


Answer:

Given: 2 sin 2θ = √3

Therefore, sin 2θ = √3/2


⇒ sin 2θ = sin 60°


⇒ 2θ = 60°/2 = 30°


Therefore, θ = 30°



Question 10.

Prove that .


Answer:

Consider and rationalize:


=


=


=


=


=


= cosec A + cot A



Question 11.

If cosec θ + cot θ = p, prove that .


Answer:

Given: cosec θ + cot θ = p


p2 – 1 = (cosec θ + cot θ)2 – 1


= cosec2 θ + cot2 θ + 2 cosec θ cot θ – 1


= cosec2 θ – 1 + cot2 θ + 2 cosec θ cot θ


= cot2 θ + cot2 θ + 2 cosec θ cot θ


= 2 cot θ (cot θ + cosec θ)


Also, p2 + 1 = (cosec θ + cot θ)2 + 1


= cosec2 θ + cot2 θ + 2 cosec θ cot θ + 1


= cosec2 θ + 1 + cot2 θ + 2 cosec θ cot θ


= cosec2 θ + cosec2 θ + 2 cosec θ cot θ


= 2 cosec θ (cosec θ + cot θ)


Now, consider L.H.S. =


=


= cot θ/cosec θ


= cos θ


= R.H.S.


Hence, proved.



Question 12.

Prove that .


Answer:

Consider R.H.S. = and rationalize:


=


=


=


=


=


= (cosec A – cot A)2


= L.H.S.


Hence, proved.



Question 13.

If 5 cot θ = 3, show that the value of is 16/29.


Answer:

Given: 5cot θ = 3


Therefore cot θ = 3/5


Consider and divide numerator and denominator by sin θ:


=


=


=


= 16/29


Hence, showed.



Question 14.

Prove that (sin 32° cos 58° + cos 32° sin 58°) = 1.


Answer:

Consider L.H.S. = (sin 32° cos 58° + cos 32° sin 58°)

= sin 32° cos (90° – 32°) + cos 32° sin (90° – 32°)


= sin2 32° + cos2 32°


= 1


= R.H.S.


Hence, proved.



Question 15.

If x = a sin θ + b cos θ and y = a cos θ – b sin θ, prove that x2 + y2 = a2 + b2.


Answer:

Given: a sin θ + b cos θ = x …….(1)


a cos θ – b sin θ = y …….(2)


Square equation (1) and (2) on both sides:


a2 sin2 θ + b2 cos2 θ + 2ab cos θ sin θ = x2 …….(3)


a2 cos2 θ + b2 sin2 θ – 2ab cos θ sin θ = y2 ……..(4)


Add equation (3) and (4):


[a2 sin2 θ + b2 cos2 θ + 2ab cos θ sin θ] + [a2 cos2 θ + b2 sin2 θ – 2ab cos θ sin θ] = x2 + y2


⇒ a2 (sin2 θ + cos2 θ) + b2 (cos2 θ + sin2 θ) = x2 +y2


⇒ a2 +b2 = x2 + y2


Hence, proved.



Question 16.

Prove that .


Answer:

Consider L.H.S. =

Multiply numerator and denominator by (1 + sin θ):


=


=


=


=


= [(1/cos θ) + (sin θ/cos θ)]2


= (sec θ + tan θ)2


= R.H.S.


Hence, proved.



Question 17.

Prove that .


Answer:

Consider L.H.S. =


Multiply and divide the first term by (sec θ + tan θ):


=


= – sec θ


= sec θ + tan θ – sec θ (∵1 + tan2 θ = sec2 θ)


= tan θ


Consider R.H.S. =


Multiply and divide the second term by (sec θ – tan θ):


=


= sec θ –


= sec θ – sec θ + tan θ (∵1 + tan2 θ = sec2 θ)


= tan θ


Therefore, L.H.S. = R.H.S.


Hence, proved.



Question 18.

Prove that .


Answer:

Consider L.H.S. =


=


=


= sin A/cos A


= tan A


= R.H.S.


Hence, proved.



Question 19.

Prove that


Answer:

Consider L.H.S. =

=


=


=


=


=


=


=


=


= tan A + (1/tan A) + 1


= 1 + tan A + cot A


= R.H.S.


Hence, proved.



Question 20.

If sec 5A = cosec (A – 36°) and 5A is an acute angle, show that A = 21°.


Answer:

We are given that: sec 5A = cosec (A – 36°)

∴We can rewrite it as: cosec (90° – 5A) = cosec (A – 36°)


On comparing both sides, we get,


90° – 5A = A – 36°


⇒ A + 5A = 90° + 36°


⇒ 6A = 126°


⇒ A = 21°


Hence, proved.