Buy BOOKS at Discounted Price

T-ratios Of Some Particular Angles

Class 10th Mathematics RS Aggarwal Solution
Exercise 6
  1. sin 60 cos 30 + cos 60 sin 30 Evaluate each of the following:
  2. cos 60 cos 30 sin 60 sin 30 Evaluate each of the following:
  3. cos 45 cos 30 + sin 45 sin 30 Evaluate each of the following:
  4. sin30^circle /cos45^circle + cot45^circle /sec60^circle - sin60^circle…
  5. 5cos^260^circle + 4sec^230^circle - tan^245^circle /sin^230^circle +…
  6. 2 cos^2 60 + 3 sin^2 45 3 sin^2 30 + 2 cos^2 90 Evaluate each of the following:…
  7. cot^2 30 2cos^2 30 (3/4)sec^2 45 + (1/4)cosec^2 30 Evaluate each of the…
  8. (sin^2 30 + 4 cot^2 45 sec^2 60)(cosec^2 45 sec^2 30) Evaluate each of the…
  9. 4/cot^230^circle + 1/sin^230^circle - 2cos^245^circle - sin^20^circle Evaluate…
  10. Show that: (i) 1-sin60^circle /cos60^circle = tan60^circle - 1/tan60^circle + 1…
  11. Verify each of the following: (i) sin 60° cos 30° — cos 60° sin 30° = sin 30°…
  12. If A = 45°, verify that: (i) sin 2A = 2 sin A cos A (ii) cos 2A = 2 cos^2 A —1…
  13. If A = 30°, verify that: (i) sin2a = 2tana/1-tan^2a (ii) cos2a =
  14. (i) sin (A + B) = sin A cos B + cos A sin B (ii) cos (A + B) = cos A cos B —…
  15. (i) sin (A — B) = sin A cos B — cos A sin B (ii) cos (A — B) = cos A cos B +…
  16. If A and B are acute angles such that tan a = 1/3 , tanb = 1/2 tan (a+b) =…
  17. Using the formula, tan2a = 2tana/1-tan^2a , find the value of tan 60°, it being…
  18. Using the formula, cosa = root 1+cos2a/2 , find the value of cos 30°, it being…
  19. Using the formula, sina = root 1-cos2a/2 , find the value of sin 30°, it being…
  20. In the adjoining figure, ΔABC is a right-angled triangle in which B = 90°, ∠A=…
  21. In the adjoining figure, ΔABC ABC is right-angled at B and ∠A= 30°. If BC = 6…
  22. In the adjoining figure, ΔABC is right-angled at B and ∠A= 45°. If AC = 3√2 cm,…
  23. If sin (A + B) =1 and cos (A - B) = 1, 0° ≤ (A + B) ≤ 90° and A B then find A…
  24. If sin (A - B) = 1/2 and cos (A +B) = 1/2 ,0° (A + B) 90° and A B then find A…
  25. If tan (A - B) = 1/√3 and tan (A + B) = √3, 0° (A + B) 90° and A B then find A…
  26. If 3x = cosec θ and 3/x = cot θ, find the value of 3 (x^2 - 1/x^2)…
  27. If sin (A + B) = sin A cos B + cos A sin B , and cos (A - B) = cos A cos B +…

Exercise 6
Question 1.

Evaluate each of the following:

sin 60° cos 30° + cos 60° sin 30°


Answer:

Since sin 60° = √3/2 = cos 30°

and sin 30° = 1/2 = cos 60°


∴ sin 60° cos 30° + cos 60° sin 30° = (√3/2)( √3/2) + (1/2)(1/2)


= (3/4) + (1/4)


= 4/4


= 1



Question 2.

Evaluate each of the following:

cos 60° cos 30° — sin 60° sin 30°


Answer:

Since cos 60° = 1/2 = sin 30°

and cos 30° = √3/2 = sin 60°


∴ cos 60° cos 30° — sin 60° sin 30° = (1/2) × (√3/2) - (√3/2) × (1/2)


= (√3/4) - (√3/4)


= 0



Question 3.

Evaluate each of the following:

cos 45° cos 30° + sin 45° sin 30°


Answer:

Since cos 45° = 1/√2 = sin 45°

cos 30° = √3/2


sin 30° = 1/2


∴ cos 45° cos 30° + sin 45° sin 30° = (1/√2)×(√3/2) + (1/√2)(1/2)


= (√3 / 2√2) + (1 / 2√2)


= (√3 + 1) / (2√2)



Question 4.

Evaluate each of the following:



Answer:

Since sin 30° = 1/2 , sin 60° = √3/2 , sin 90° = 1

cos 30° = √3/2 , cos 45° = 1/√2 , cos 60° = 1/2


sec 60° = ( 1/cos 60° )= 2


tan 45° = (sin 45° /cos 45°) = (1/√2) / ( 1/√2) = 1


cot 45° = (1/tan 45°) = 1/1 = 1



= ((1/2) / ((1/√2)) + (1 /2 ) – ((√3/2) / 1) + ((√3/2)/1)


= (1/√2) + (1/2) – (√3/2) + (√3/2)


= (1/√2) + (1/2)


= (√2/2) + (1/2)


= (√2 + 1)/2



Question 5.

Evaluate each of the following:


Answer:

cos 30° = √3/2 ⇒ cos2 30° = 3/4

cos 60° = 1/2 ⇒ cos2 60° = 1/4


sec 30° = (1/cos 30°) = (2/√3) ⇒ sec2 30° = 4/3


tan 45° = 1 ⇒ tan2 45° = 1


sin 30° = 1/2 ⇒ sin2 30° = 1/4


We also know that sin2 θ + cos2 θ = 1



= [(5×(1/4)) + (4×(4/3)) – (1)]/1


= (5/4) + (16/3) – 1


= (15 + 64 - 12)/12 = 67/12



Question 6.

Evaluate each of the following:

2 cos260° + 3 sin245° — 3 sin230° + 2 cos290°


Answer:

cos 60° = 1/2 ⇒ cos2 60° = 1/4

sin 45° = 1/√2 ⇒ sin2 45° = 1/2


sin 30° = 1/2 ⇒ sin2 30° = 1/4


cos 90° = 0 ⇒ cos2 90° = 0


∴ 2 cos260° + 3 sin245° — 3 sin230° + 2 cos290°


= 2(1/4) + 3(1/2) – 3(1/4) + 2(0)


= (1/2) + (3/2) – (3/4) = 2 – (3/4)


= 5/4



Question 7.

Evaluate each of the following:

cot230° — 2cos230° — (3/4)sec245° + (1/4)cosec230°


Answer:

cos 30° = √3/2 , ⇒ cos2 30° = 3/4

sin 30° = 1/2


∴ cosec 30° = 1/sin30° = 2 ⇒ cosec2 30° = 4


cot 30° = (cos 30°/sin 30°) = √3 ⇒ cot2 30° = 3


cos 45° = 1/√2


∴ sec 45° = 1/cos 45° = √2 ⇒ sec2 45° = 2


∴ cot230° — 2cos230° — (3/4)sec245° + (1/4)cosec230°


= 3 – 2(3/4) – (3/4) × 2 + (1/4) × 4


= 3 – 1.5 – 1.5 + 1


= 1



Question 8.

Evaluate each of the following:

(sin230° + 4 cot245° — sec260°)(cosec245° sec230°)


Answer:

sin 30° = 1/2 ⇒ sin2 30° = 1/4

cos 45° = 1/√2 = sin 45°


cot 45° = 1 ⇒ cot2 45° = 1


cos 60° = 1/2 ⇒ sec 60° = 2 ⇒ sec2 60° = 4


cos 30° = √3/2 ⇒ sec 30° = 2/√3 ⇒ sec2 30° = 4/3


cosec 45° = 1/sin 45° = √2 ⇒ cosec2 45° = 2


∴ (sin230° + 4 cot245° — sec260°)(cosec245° sec230°)


= ((1/4) + 4(1) – 4) × (2)(4/3)


= (1/4) × (8/3)


= 8/12


= 2/3



Question 9.

Evaluate each of the following:



Answer:

sin 30° = 1/2 , ⇒ sin2 30° = 1/4 ⇒ (1/sin2 30°) = 4

cos 30° = √3/2 ,


cot 30° = (cos 30°/ sin 30°) = √3 ⇒ cot2 30° = 3


cos 45° = 1/√2 ⇒ cos2 45° = 1/2


sin 0° = 0


- 2 cos2 45° - sin2 0° = (4/3) + (4) – 2(1/2) – 0


= (4/3) + 4 – 1


= 13/3



Question 10.

Show that:

(i)

(ii)


Answer:

(i) Consider L.H.S. = = = (2-√3)


Consider R.H.S. = =


= (Rationalizing the denominator)


=


= 2 - √3


L.H.S. = R.H.S.


Hence, verified.


(ii) L.H.S. =


R.H.S. = cos 30° = √3/2


L.H.S. = R.H.S.


Hence, verified.



Question 11.

Verify each of the following:

(i) sin 60° cos 30° — cos 60° sin 30° = sin 30°

(ii) cos 60° cos 30° + sin 60° sin 30° = cos 30°

(iii) 2 sin 30° cos 30° = sin 60°

(iv) 2 sin 45° cos 45° = sin 90°


Answer:

(i) Consider L.H.S. = sin 60° cos 30° — cos 60° sin 30°


= (√3/2) × (√3/2) – (1/2)(1/2)


= (3/4) – (1/4)


= 2/4


=1/2


Consider R.H.S. = sin 30° = 1/2


L.H.S. = R.H.S.


Hence, verified.


(ii) Consider L.H.S. = cos 60° cos 30° + sin 60° sin 30°


= (1/2) × (√3/2) + (√3/2)(1/2)


= (√3/4) + (√3/4)


= √3/2 = cos 30° = R.H.S.


∴ L.H.S. = R.H.S.


Hence, verified.


(iii) Consider L.H.S. = 2 sin 30° cos 30°


= 2 × (1/2) × (√3/2)


= √3/2 = sin 60° = R.H.S.


∴ L.H.S. = R.H.S.


Hence, verified.


(iv) Consider L.H.S. = 2 sin 45° cos 45°


= 2 × (1/√2) × (1/√2)


= (2 × 1/2)


= 1 = sin 90° = R.H.S.


∴ L.H.S. = R.H.S.


Hence, verified.



Question 12.

If A = 45°, verify that:

(i) sin 2A = 2 sin A cos A

(ii) cos 2A = 2 cos2A —1 = 1— 2 sin2A


Answer:

(i) To show: sin 2A = 2 sin A cos A


A = 45°


∴ To show: sin 90° = 2 sin 45° cos 45°


Consider R.H.S. = 2 sin 45° cos 45°


= 2 × (1/√2) × (1/√2)


= (2 × 1/2)


= 1 = sin 90° = L.H.S.


∴ L.H.S. = R.H.S.


Hence, verified.


(ii) To show: cos 2A = 2 cos2A —1 = 1— 2 sin2A


A = 45°


∴ To show: cos 90° = 2 cos2 45° —1 = 1— 2 sin2 45°


Consider 2 cos2 45° —1 = 1— 2 sin2 45°


= 2 × (1/√2) – 1


= 1 – 1


= 0


= cos 90° = R.H.S.


Consider 1— 2 sin2 45° = 1 – 2(1/2)


= 1 – 1


= 0


= cos 90° = R.H.S.


∴ L.H.S. = R.H.S.


Hence, verified.



Question 13.

If A = 30°, verify that:

(i)

(ii)

(iii)


Answer:

(i) To prove:- sin 2A =


A = 30°


∴ To show:- sin 60° =


Consider L.H.S. = =


=


= =


= √3/2


= sin 60° = R.H.S.


∴ R.H.S. = L.H.S.


Hence, verified.


(ii) To show:- cos 2A =


A = 30°


∴ To show:- cos 60° =


Consider R.H.S. = =


= 2/4 = 1/2 = cos 60° = L.H.S.


∴ R.H.S. = L.H.S.


Hence, verified.


(iii) To show:- tan2A =


A = 30°


∴ To show:- tan 60° =


Consider R.H.S. = = =


= 3/√3 = √3


= tan 60° = L.H.S.


∴ R.H.S. = L.H.S.


Hence, verified.



Question 14.

If A = 60° and B = 30°, verify that:

(i) sin (A + B) = sin A cos B + cos A sin B

(ii) cos (A + B) = cos A cos B — sin A sin B


Answer:

(i) To verify: sin (A + B) = sin A cos B + cos A sin B


If A = 60° and B = 30°, then


To verify: sin 90° = sin 60° cos 30° + cos 60° sin 30°


Consider R.H.S. = sin 60° cos 30° + cos 60° sin 30°


= (√3/2) × (√3/2) + (1/2)(1/2)


= (3/4) + (1/4)


= 4/4


=1


Consider L.H.S. = sin 90° = 1


∴ L.H.S. = R.H.S.


Hence, verified.


(ii) To verify: cos (A + B) = cos A cos B — sin A sin B


If A = 60° and B = 30°, then


To verify: cos (90°) = cos 60° cos 30° — sin60° sin 30°


Consider R.H.S. = cos 60° cos 30° - sin 60° sin 30°


= (1/2) × (√3/2) - (√3/2)(1/2)


= (√3/4) - (√3/4)


= 0 = cos 90° = L.H.S.


∴ L.H.S. = R.H.S.


Hence, verified.



Question 15.

If A = 60° and B = 30°, verify that:

(i) sin (A — B) = sin A cos B — cos A sin B

(ii) cos (A — B) = cos A cos B + sin A sin B

(iii)


Answer:

(i)To verify: sin (A - B) = sin A cos B - cos A sin B

If A = 60° and B = 30°, then

Consider LHS

sin(60°-30°) = sin 30° = 1/2

Consider R.H.S. = sin 60° cos 30° - cos 60° sin 30°


= (√3/2) × (√3/2) - (1/2) (1/2)


= (3/4) - (1/4)


= 2/4


=1/2

∴ L.H.S. = R.H.S.


Hence, verified.


(ii) To verify: cos (A - B) = cos A cos B + sin A sin B


If A = 60° and B = 30°, then


To verify: cos (30°) = cos 60° cos 30° + sin 60° sin 30°


Consider R.H.S. = cos 60° cos 30° + sin 60° sin 30°


= (1/2) × (√3/2) + (√3/2)(1/2)


= (√3/4) + (√3/4)


= √3/2 = cos 30° = L.H.S.


∴ L.H.S. = R.H.S.


Hence, verified.


(iii) To verify:- tan(A +B) =


If A = 60° and B = 30°, then


To verify: tan 90° =


Consider R.H.S. = =


= = 4/0 = ∞


= tan 90° = L.H.S.


∴ R.H.S. = L.H.S.


Hence, verified.


Question 16.

If A and B are acute angles such that tan , show that A + B = 45°.


Answer:

Given: tan (A +B) = and tan A = 1/3, tan B = 1/2


∴ tan(A +B) = = = = 1


∴ tan(A + B) = 1


Also, A and B are acute angles, therefore both A and B are less than 90°. So A + B must be less than 180°.


Therefore, the only possible case for which tan (A+B) = 1 will be when (A + B) equals 45°.


Thus, A + B = 45°



Question 17.

Using the formula, , find the value of tan 60°, it being given that


Answer:

To find:- tan 60°


Given: tan2A = ……………………(1)


tan 30° = 1/√3


∴ Putting A = 30° in equation (1), we have the following:


tan 60° =


∴ tan 60° = = =


= 3/√3 = √3


∴ tan 60° = √3



Question 18.

Using the formula,, find the value of cos 30°, it being given that cos 60° = 1/2 .


Answer:

Given: cos A = , …………………….(1)


cos 60° = 1/2


To find: cos 30°


By putting A = 30° in equation (1), we get the following:


cos 30° =


=


= = √3/2


∴ cos 30° = √3/2



Question 19.

Using the formula, , find the value of sin 30°, it being given that cos 60° =


Answer:

Given: sin A = , …………………….(1)


cos 60° = 1/2


To find: sin 30°


By putting A = 30° in equation (1), we get the following:


sin 30° =


=


= = 1/2


∴ sin 30° = 1/2



Question 20.

In the adjoining figure, ΔABC is a right-angled triangle in which B = 90°, ∠A= 30° and AC = 20 cm. Find (i) BC, (ii) AB.



Answer:

Since, in a right angled triangle,


sin θ = Perpendicular / Hypotenuse ,


and cos θ = Base / Hypotenuse ,


where θ is the angle made between the hypotenuse and the base.


(i) ∴ In the given figure, sin 30° = BC/AC


⇒ 1/2 = BC/20


⇒ (1/2) × 20 = BC


⇒ BC = 10 cm


(ii) Now, In the given figure, cos 30° = AB/AC


⇒ √3/2 = AB/20


⇒ (√3/2) × 20 = AB


⇒ AB = 10√3 cm



Question 21.

In the adjoining figure, ΔABC ABC is right-angled at B and ∠A= 30°. If BC = 6 cm, find (i) AB, (ii) AC.



Answer:

Since, in a right-angled triangle,

sin θ = Perpendicular / Hypotenuse,


and cos θ = Base / Hypotenuse,


where θ is the angle made between the hypotenuse and the base.


(i) ∴ In the given figure, sin 30° = BC/AC


⇒ 1/2 = 6/AC


⇒ AC = 6 × 2


⇒ AC = 12 cm


(ii) Now, In the given figure, cos 30° = AB/AC


⇒ √3/2 = AB/12


⇒ (√3/2) × 12 = AB


⇒ AB = 6√3 cm


Aliter: Since ABC is a right-angled triangle,


∴ (AB)2 +(BC)2 = (AC)2


∴ (AB)2 = (AC)2 - (BC)2


⇒ (AB)2 = 144 – 36 = 108


⇒ (AB) = √108 = 6√3


∴ AB = 6√3 cm



Question 22.

In the adjoining figure, ΔABC is right-angled at B and ∠A= 45°. If AC = 3√2 cm, find (i) BC, (ii) AB.



Answer:

Since, in a right-angled triangle,


sin θ = Perpendicular / Hypotenuse,


and cos θ = Base / Hypotenuse,


where θ is the angle made between the hypotenuse and the base.


(i) ∴ In the given figure, sin 45° = BC/AC


⇒ 1/√2 = BC / (3√2)


⇒ BC = (1/√2) × (3√2) = 3


⇒ BC = 3 cm


(ii) Now, In the given figure, cos 45° = AB/AC


⇒ 1/√2 = AB / (3√2)


⇒ AB = 1/√2 × (3√2)


⇒ AB = 3 cm



Question 23.

If sin (A + B) =1 and cos (A - B) = 1, 0° ≤ (A + B) ≤ 90° and A > B then find A and B.


Answer:

Given: (i) sin (A + B) = 1


(ii) cos (A - B) = 1


Since, sin (A + B) = 1


⇒ sin (A + B) = sin 90° (∵ 0° ≤ (A + B) ≤ 90°, sin 90° = 1)


⇒ A + B = 90° .......................................... (1)


Also, cos (A - B) = 1


⇒ cos (A - B) = cos 0° (∵ 0° ≤ (A + B) ≤ 90°, cos 0° = 1)


⇒ A - B = 0° .......................................... (2)


From equation (2), we get A = B


Putting this value in equation (1), we get, 2A = 90° ⇒ A = 45°


∴ B = A = 45°


A = B = 45°



Question 24.

If sin (A - B) = 1/2 and cos (A +B) = 1/2 ,0° < (A + B) < 90° and A > B then find A and B.


Answer:

Given: (i) sin (A - B) = 1/2


(ii) cos (A + B) = 1/2


Since, sin (A - B) = 1


⇒ sin (A - B) = sin 30° (∵ 0° < (A + B) < 90°, sin 30° = 1/2)


⇒ A - B = 30° .......................................... (1)


Also, cos (A + B) = 1/2


⇒ cos (A + B) = cos 60° (∵ 0° < (A + B) < 90°, cos 60° = 1/2)


⇒ A + B = 60° .......................................... (2)


On adding equation (1) and (2), we get,


2A = 90° ⇒ A = 45°


Putting this value in equation (2), we get,


B = 60° - A = 60° - 45° ⇒ B = 15°


∴ ∠A = 45°, ∠B = 15°



Question 25.

If tan (A - B) = 1/√3 and tan (A + B) = √3, 0° < (A + B) < 90° and A > B then find A and B.


Answer:

Given: (i) tan (A - B) = 1/√3


(ii) tan (A + B) = √3


Since, tan (A - B) = 1/√3


⇒ tan (A - B) = tan 30°
(∵ 0° < (A + B) < 90°, tan 30° = 1/√3)


⇒ A - B = 30° .......................................... (1)


Also, tan (A + B) = √3


⇒ tan (A + B) = tan 60°
(∵ 0° < (A + B) < 90°, tan 60° = √3)


⇒ A + B = 60° .......................................... (2)


On adding equation (1) and (2), we get,

A - B + A + B = 30° + 60°

2A = 90°
⇒ A = 45°


Putting this value in equation (2), we get,


B = 60° - A
= 60° - 45°
⇒ B = 15°


∴ ∠A = 45°, ∠B = 15°


Question 26.

If 3x = cosec θ and 3/x = cot θ, find the value of


Answer:

Given,

3x = cot θ

⇒ 9x2 = cot2θ [1]

and



Subtracting [2] from [1], we get


Question 27.

If sin (A + B) = sin A cos B + cos A sin B , and

cos (A - B) = cos A cos B + sin A sin B, find the values of

(i) sin 75° and (ii) cos 15°.


Answer:

Given: sin (A + B) = sin A cos B + cos A sin B


cos (A - B) = cos A cos B + sin A sin B


(i) To find: sin 75°


If we put A = 30° and B = 45°, then we have:


sin 75° = sin 30° cos 45° + cos 30° sin 45°


∴ sin 75° = (1/2) × (1/√2) + (√3/2) × (1/√2)


= (1/2√2) + (√3/2√2)


=


(ii) To find: cos 715°


If we put A = 45° and B = 30°, then we have:


cos 15° = cos 45° cos 30° + sin 45° sin 30°


∴ cos 15° = (1/√2) × (√3/2) + (1/√2) × (1/2)


= (√3 / 2√2) + (1/2√2)


=


∴ (i) sin 75° =


(ii) cos 15° =