Buy BOOKS at Discounted Price

Trigonometric Functions

Class 11th Mathematics RD Sharma Solution
Exercise 5.1
  1. sec^4 x - sec^2 x = tan^4 x + tan^2 x Prove the following identities…
  2. sin^6 x + cos^6 x = 1 - 3 sin^2 x cos^2 x Prove the following identities…
  3. (cosecx - sinx) (secx - cosx) (tanx + cotx) = 1 Prove the following identities…
  4. cosecx (secx - 1) - cotx (1 - cosx) = tanx - sinx Prove the following identities…
  5. 1-sinxcosx/cosx (secx-cosecx) sin^2x-cos^2x/sin^3x+cos^3x = sinx Prove the…
  6. tanx/1-cotx + cotx/1-tanx = (secx cosecx + 1) Prove the following identities…
  7. sin^3x+cos^3x/sinx+cosx + sin^3x-cos^3x/sinx-cosx = 2 Prove the following…
  8. (secx sec y + tanx tan y)^2 - (secx tan y + tanx sec y)^2 = 1 Prove the…
  9. cosx/1-sinx = 1+cosx+sinx/1+cosx-sinx Prove the following identities…
  10. tan^3x/1+tan^2x + cot^3x/1+cot^2x = 1-2sin^2xcos^2x/sinxcosx Prove the…
  11. 1 - sin^2x/1+cotx - cos^2x/1+tanx = sinx cosx Prove the following identities…
  12. (1/sec^2x-cos^2x + 1/cosec^2x-sin^2x) sin^2 x cos^2 x =
  13. (1 + tan α tan β)^2 + (tan α - tan β)^2 = sec^2 α sec^2 β Prove the following…
  14. (1+cotx+tanx) (sinx-cosx)/sec^3x-cosec^3x = sin^2 x cos^2 x Prove the following…
  15. 2sinxcosx-cosx/1-sinx+sin^2x-cos^2x = cotx Prove the following identities…
  16. cosx (tanx + 2) (2 tanx + 1) = 2 secx + 5 sinx Prove the following identities…
  17. If a = 2sinx/1+cosx+sinx then prove that 1-cosx+sinx/1+sinx is also equal to a.…
  18. If sinx = a^2 - b^2/a^2 + b^2 find the values of tanx, secx and cosecx…
  19. If tanx = b/a then find the value of root a+b/a-b + root a-b/a+b
  20. If tanx = a/b show that asinx-bcosx/asinx+bcosx = a^2 - b^2/a^2 + b^2…
  21. If cosecx - sinx = a^3 , secx - cosx = b^3 , then prove that a^2 b^2 (a^2 +…
  22. If cotx(1 + sinx) = 4m and cotx(1 - sinx) = 4n, prove that (m^2 - n^2)^2 = mn.…
  23. If sinx + cosx = m, then prove that sin^6 x + cos^6 x = 4-3 (m^2 - 1)^2/4 where…
  24. If a = secx - tanx and b = cosecx + cotx, then show that ab + a - b + 1 = 0.…
  25. Prove that : | root 1-sinx/1+sinx + root 1+sinx/1-sinx | = - 2/cosx where pi /2…
  26. t_3-t_5/t_1 = t_5-t_7/t_3 If Tn = sinnx + cosnx, prove that
  27. 2 T6 - 3 T4 + 1 = 0 If Tn = sinnx + cosnx, prove that
  28. 6 T10 - 15 T8 + 10 T6 - 1 = 0 If Tn = sinnx + cosnx, prove that
Exercise 5.2
  1. cot x = 12/5 , x in quadrant III Find the values of the other five…
  2. cos x = - 1/2 , x in quadrant II Find the values of the other five…
  3. tan x = 3/4 , x in quadrant III Find the values of the other five trigonometric…
  4. sin x = 3/5 , x in quatrant I Find the values of the other five trigonometric…
  5. If sin x = 12/13 and lies in the second quadrant, find the value of secx + tanx.…
  6. If sin x = 3/5 tan y = 1/2 and pi /2 x pi y 3 pi /2 find the value of 8 tan x -…
  7. If sinx + cosx = 0 andx lies in the fourth quadrant, find sinx and cosx.…
  8. If cos x = - 3/5 and pi x 3 pi /2 find the values of other five trigonometric…
Exercise 5.3
  1. sin 5 pi /3 Find the values of the following trigonometric ratios:…
  2. sin 17 π Find the values of the following trigonometric ratios:
  3. tan 11 pi /6 Find the values of the following trigonometric ratios:…
  4. cos (- 25 pi /4) Find the values of the following trigonometric ratios:…
  5. tan 7 pi /4 Find the values of the following trigonometric ratios:…
  6. sin 17 pi /6 Find the values of the following trigonometric ratios:…
  7. cos 19 pi /6 Find the values of the following trigonometric ratios:…
  8. sin (- 11 pi /6) Find the values of the following trigonometric ratios:…
  9. cosec (- 20 pi /3) Find the values of the following trigonometric ratios:…
  10. tan (- 13 pi /4) Find the values of the following trigonometric ratios:…
  11. cos 19 pi /4 Find the values of the following trigonometric ratios:…
  12. sin 41 pi /4 Find the values of the following trigonometric ratios:…
  13. cos 39 pi /4 Find the values of the following trigonometric ratios:…
  14. sin 151 pi /6 Find the values of the following trigonometric ratios:…
  15. tan 225o cot 405o + tan 765o cot 675o = 0 prove that :
  16. sin 8 pi /3 cos 23 pi /6 + cos 13 pi /3 sin 35 pi /6 = 1/2 prove that :…
  17. cos 24o + cos 55o + cos 125o + cos 204o + cos 300o = 1/2 prove that :…
  18. tan (-225o) cot (-405o) - tan (-765o) cot (675o) = 0 prove that :…
  19. cos 570o sin 510o + sin (-330o) cos (-390o) = 0 prove that :
  20. tan 11 pi /3 - 2sin 4 pi /6 - 3/4 cosec^2 pi /4 + 4cos^2 17 pi /6 = 3-4 root…
  21. 3sin pi /6 sec pi /3 - 4sin 5 pi /6 cot pi /4 = 1 prove that :
  22. cos (2 pi +x) cosec (2 pi +x) tan (pi /2+x)/sec (pi /2+x) cosxcot (pi +x) = 1…
  23. cosec (90^circle + x) + cot (450^circle + x)/cosec (90^circle + x) + tan…
  24. sin (pi -x) cos (pi /2 + x) tan (3 pi /2 - x) cot (2 pi -x)/sin (2 pi -x) cos…
  25. 1+cotx-sec (pi /2 + x) 1+cotx+sec (pi /2 + x) = 2cotx Prove that :…
  26. tan (pi /2 - x) sec (pi -x) sin (-x)/sin (pi +x) cot (2 pi -x) cosec (pi /2 -…
  27. sin^2 pi /18 + sin^2 pi /9 + sin^2 7 pi /18 + sin^2 4 pi /9 = 2 Prove that :…
  28. sec (3 pi /2 - x) sec (x - 5 pi /2) + tan (5 pi /2 + x) tan (x - 3 pi /2) = - 1…
  29. In a ∆ABC, prove that : i. cos (A + B) + cos C = 0 ii. cos (a+b/2) = sin c/2…
  30. If A, B, C, D be the angles of a cyclic quadrilateral taken in order prove that…
  31. cosec (pi /2 + theta) + xcostheta cot (pi /2 + theta) = sin (pi /2 + theta)…
  32. xcot (pi /2 + theta) + tan (pi /2 + theta) sintegrate heta +cosec (pi /2 +…
  33. tan4pi -cos 3 pi /2 - sin 5 pi /6 cos 2 pi /3 = 1/4 Prove that:
  34. sin 13 pi /3 sin 8 pi /3 + cos 2 pi /3 sin 5 pi /6 = 1/2 Prove that:…
  35. sin 13 pi /3 sin 2 pi /3 + cos 4 pi /3 sin 13 pi /6 = 1/2 Prove that:…
  36. sin 10 pi /3 cos 13 pi /6 + cos 8 pi /3 sin 5 pi /6 = - 1 Prove that:…
  37. tan 5 pi /4 cot 9 pi /4 + tan 17 pi /4 cot 15 pi /4 = 0 Prove that:…
Very Short Answer
  1. Write the maximum and minimum values of cos (cos x).
  2. Write the maximum and minimum values of sin (sin x).
  3. Write the maximum value of sin (cos x).
  4. If sin x = cos2 x, then write the value of cos2 x (1 + cos2 x).
  5. If sin x = cosec x = 2, then write the value of sinn x + cosecn x.…
  6. If sin x + sin2 x = 1, then write the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.…
  7. If sin x + sin2 x = 1, then write the value of cos8 x + 2 cos6 x + cos4 x.…
  8. If sin θ1 + sin θ2 + sin θ3 = 3, then write the value of cos θ1 + cos θ2 + cos θ3.…
  9. Write the value of sin 10° + sin 20° + sin 30° + ... + sin 360°.
  10. A circular wire of radius 15 cm is cut and bent so as to lie along the circumference…
  11. Write the value of 2 (sin6 x + cos6 x) − 3 (sin4 x + cos4 x) + 1.…
  12. Write the value of cos 1° + cos 2° + cos 3° + ... + cos 180°.
  13. If cot (α + β) = 0, then write the value of sin (α + 2β).
  14. If tan A + cot A = 4, then write the value of tan4 A + cot4 A.
  15. Write the least value of cos2 x + sec2 x.
  16. If x = sin14x + cos20 x, then write the smallest interval in which the value of x lie.…
  17. If 3 sin x + 5 cos x = 5, then write the value of 5 sin x − 3 cos x.…
Mcq
  1. If tanx = x - {1}/{4x} , then sec x − tan x is equal to Mark the correct…
  2. If secx = x + {1}/{4x} , then sec x + tan x = Mark the correct alternative in the…
  3. If { pi }/{2} , then root { {1-sinx}/{1+sinx} } is equal to Mark the correct…
  4. If π x 2 π, then root { {1+cosx}/{1-cosx} } is equal to Mark the…
  5. If 0, and if {y+1}/{1-y} = root { frac {1+sinx}/{1-sinx} } , then y is equal to…
  6. If { pi }/{2} , then root { {1-sinx}/{1+sinx} } + root { {1+sinx}/{1-sinx} }…
  7. If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is…
  8. If tanx+secx = root {3} , 0x< pi , then x is equal to Mark the correct alternative in…
  9. If tanx = - {1}/{ root {5} } and x lies in the IV quadrant, then the value of cos…
  10. If { 3 pi }/{4} < alpha < pi , then root { 2cotalpha + {1}/{sin^{2}alpha} }…
  11. sin6 A + cos6 A + 3 sin2 A cos2 A = Mark the correct alternative in the following:…
  12. If cosecx-cotx = {1}/{2} , 0, then cos x is equal to Mark the correct alternative…
  13. If cosecx+cotx = {11}/{2} , then tan x = Mark the correct alternative in the…
  14. sec^{2}x = {4xy}/{ (x+y)^{2} } is true if and only if Mark the correct alternative…
  15. If x is an acute angle and tanx = {1}/{ root {7} } , then the value of…
  16. The value of sin2 5° + sin2 10° + sin2 15° + … + sin2 85° + sin2 90° is Mark the…
  17. sin^{2} { pi }/{18} + sin^{2} frac { pi }/{9} + sin^{2} frac { 7 pi }/{18} +…
  18. If tan A + cot A = 4, then tan4 A + cot4 A is equal to Mark the correct alternative in…
  19. If x sin 45° cos2 60° = { tan^{2}60^{degree }cosec30^{circ} }/{…
  20. If A lies in second quadrant and 3 tan A + 4 = 0, then the value of 2 cot A − 5 cos A…
  21. If cosecx+cotx = {11}/{2} , then tan x = Mark the correct alternative in the…
  22. If tan θ + sec θ = ex, then cos θ equals Mark the correct alternative in the…
  23. If sec x + tan x = k, cos x = Mark the correct alternative in the following:…
  24. If f (x) = cos^{2}x+sec^{2}x , the Mark the correct alternative in the following:…
  25. Which of the following is incorrect? Mark the correct alternative in the following:…
  26. The value of cos 1° cos 2° cos 3° ... cos 179° is Mark the correct alternative in the…
  27. The value of tan 1° tan 2° tan 3° ... tan 89° is Mark the correct alternative in the…
  28. Which of the following is correct? Mark the correct alternative in the following:…

Exercise 5.1
Question 1.

Prove the following identities

sec4x – sec2x = tan4x + tan2x


Answer:

LHS = sec4x – sec2x


= (sec2x) 2 – sec2x


We know sec2 θ = 1 + tan2 θ.


= (1 + tan2x) 2 – (1 + tan2x)


= 1 + 2tan2x + tan4x – 1 - tan2x


= tan4x + tan2x = RHS


Hence proved.



Question 2.

Prove the following identities

sin6x + cos6x = 1 – 3 sin2x cos2x


Answer:

LHS = sin6x + cos6x


= (sin2x)3 + (cos2x)3


We know that a3 + b3 = (a + b) (a2 + b2 – ab)


= (sin2x + cos2x) [(sin2x)2 + (cos2x)2 – sin2x cos2x]


We know that sin2x + cos2x = 1 and a2 + b2 = (a + b)2 – 2ab


= 1 × [(sin2x + cos2x)2 – 2sin2x cos2x – sin2x cos2x


= 12 - 3sin2x cos2x


= 1 - 3sin2x cos2x = RHS


Hence proved.



Question 3.

Prove the following identities

(cosecx – sinx) (secx – cosx) (tanx + cotx) = 1


Answer:

LHS = (cosecx – sinx) (secx – cosx) (tanx + cotx)


We know that




We know that sin2x + cos2x = 1.



= 1 = RHS


Hence proved.



Question 4.

Prove the following identities

cosecx (secx – 1) – cotx (1 – cosx) = tanx – sinx


Answer:

LHS = cosecx (secx – 1) – cotx (1 – cosx)


We know that






We know that 1 – cos2x = sin2x.






= RHS


Hence proved.



Question 5.

Prove the following identities



Answer:

LHS


We know that



We know that a3 + b3 = (a + b) (a2 + b2 – ab)





We know that sin2x + cos2x = 1.



= sinx


= RHS


Hence proved.



Question 6.

Prove the following identities

= (secx cosecx + 1)


Answer:

LHS


We know that






We know that a3 - b3 = (a - b) (a2 + b2 + ab)



We know that sin2x + cos2x = 1.





We know that


= cosecx × secx + 1


= secx cosecx + 1


= RHS


Hence proved.



Question 7.

Prove the following identities



Answer:

LHS


We know that a3 ± b3 = (a ± b) (a2 + b2ab)



We know that sin2x + cos2x = 1.


= 1 - sinx cosx + 1 + sinx cosx


= 2


= RHS


Hence proved.



Question 8.

Prove the following identities

(secx sec y + tanx tan y)2 – (secx tan y + tanx sec y)2 = 1


Answer:

LHS = (secx sec y + tanx tan y)2 – (secx tan y + tanx sec y)2


= [(secx sec y)2 + (tanx tan y)2 + 2 (secx sec y) (tanx tan y)] – [(secx tan y)2 + (tanx sec y)2 + 2 (secx tan y) (tanx sec y)]


= [sec2x sec2 y + tan2x tan2 y + 2 (secx sec y) (tanx tan y)] – [sec2x tan2 y + tan2x sec2 y + 2 (sec2x tan2 y) (tanx sec y)]


= sec2x sec2 y - sec2x tan2 y + tan2x tan2 y - tan2x sec2 y


= sec2x (sec2 y - tan2 y) + tan2x (tan2 y - sec2 y)


= sec2x (sec2 y - tan2 y) - tan2x (sec2 y - tan2 y)


We know that sec2x – tan2x = 1.


= sec2x × 1 – tan2x × 1


= sec2x – tan2x


= 1


= RHS


Hence proved.



Question 9.

Prove the following identities



Answer:

RHS







We know that sin2x + cos2x = 1.



We know that 1 – cos2x = sin2x.










We know that 1 – sin2x = cos2x.





= LHS


Hence proved.



Question 10.

Prove the following identities



Answer:

LHS


We know that 1 + tan2x = sec2x and 1 + cot2x = cosec2x







We know that a2 + b2 = (a + b)2 – 2ab



We know that sin2x + cos2x = 1.




= RHS


Hence proved.



Question 11.

Prove the following identities

= sinx cosx


Answer:

LHS


We know that





We know that a3 + b3 = (a + b) (a2 + b2-ab)




= 1 – (sin2x + cos2x) + sinx cosx


We know that sin2x + cos2x = 1.


= 1 – 1 + sinx cosx


= sinx cosx


= RHS


Hence proved.



Question 12.

Prove the following identities

sin2x cos2x


Answer:

LHS


We know that






We know that sin2x + cos2x = 1.





= RHS


Hence proved.



Question 13.

Prove the following identities

(1 + tan α tan β)2 + (tan α – tan β)2 = sec2 α sec2 β


Answer:

LHS = (1 + tan α tan β)2 + (tan α – tan β)2


= 1+ tan2 α tan2 β + 2 tan α tan β + tan2 α + tan2 β – 2 tan α tan β


= 1 + tan2 α tan2 β + tan2 α + tan2 β


= tan2 α (tan2 β + 1) + 1 (1 + tan2 β)


= (1 + tan2 β) (1 + tan2 α)


We know that 1 + tan2 θ = sec2 θ


= sec2 α sec2 β


= RHS


Hence proved.



Question 14.

Prove the following identities

= sin2x cos2x


Answer:

LHS


We know that




We know that a3 - b3 = (a - b) (a2 + b2+ab)




= sin2x cos2x


= RHS


Hence proved.



Question 15.

Prove the following identities



Answer:

LHS


We know that 1 – cos2x = sin2x






= cotx


= RHS


Hence proved.



Question 16.

Prove the following identities

cosx (tanx + 2) (2 tanx + 1) = 2 secx + 5 sinx


Answer:

LHS = cosx (tanx + 2) (2 tanx + 1)


= cosx (2 tan2x + 5 tanx + 2)



We know that





= 2 secx + 5 sinx


= RHS


Hence proved.



Question 17.

If then prove that is also equal to a.


Answer:

Given


Rationalizing the denominator,









Hence proved.



Question 18.

If find the values of tanx, secx and cosecx


Answer:

Given


We know that sin2x + cos2x = 1cos2x =1 – sin2x










Question 19.

If then find the value of


Answer:

Given tanx = b/a









Question 20.

If show that


Answer:

Given tanx = a/b


LHS


Dividing by b cosx,



Substituting value of tanx,



= RHS


Hence proved.



Question 21.

If cosecx – sinx = a3, secx – cosx = b3, then prove that a2 b2 (a2 + b2) = 1.


Answer:

Given cosecx – sinx = a3


We know that cosecx = 1/ sinx.




We know that 1 – sin2x = cos2x


… (1)


Also given secx – cosx = b3


We know that secx = 1/ cosx




We know that 1 – cos2x = sin2x


… (2)


Consider LHS = a2b2 (a2 + b2)






We know that cos2 + sin2x = 1


= 1


= RHS


Hence proved.



Question 22.

If cotx(1 + sinx) = 4m and cotx(1 – sinx) = 4n, prove that (m2 – n2)2 = mn.


Answer:

Given 4m = cotx (1+ sinx) and 4n = cotx (1 – sinx)


Multiplying both equations, we get


⇒ 16mn = cot2x (1 – sin2x)


We know that 1 – sin2x = cos2x


⇒ 16mn = cot2x cos2x


… (1)


Squaring the given equations and then subtracting,


⇒ 16m2 = cot2x (1+ sinx)2 and 16n2 = cot2x (1 – sinx)2


⇒ 16m2 – 16n2 = cot2x (4 sinx)



Squaring both sides,



… (2)


From (1) and (2),


⇒ (m2 – n2) = mn


Hence proved.



Question 23.

If sinx + cosx = m, then prove that sin6x + cos6x = where m2 ≤ 2


Answer:

Given sinx + cosx = m


We have to prove that


Proof:


LHS = sin6x + cos6x


= (sin2x)3 + (cos2x)3


We know that a3 + b3 = (a + b) (a2 + b2-ab)


= (sin2x + cos2x)3 – 3sin2x cos2x(sin2x + cos2x)


= 1 – 3 sin2x cos2x


RHS






= 1 – 3 sin2x cos2x


LHS = RHS


Hence proved.



Question 24.

If a = secx – tanx and b = cosecx + cotx, then show that ab + a – b + 1 = 0.


Answer:

Given a = secx – tanx and b = cosecx + cotx


a and b


LHS = ab + a – b + 1





= 0 = RHS


Hence proved.



Question 25.

Prove that :

where


Answer:

LHS






[∵ π/2 <x < π and in second quadrant, cosx is negative]


= RHS


Hence proved.



Question 26.

If Tn = sinnx + cosnx, prove that



Answer:

Given Tn = sinnx + cosnx


LHS







= sin2x cos2x


RHS







= sin2x cos2x


LHS = RHS


Hence proved.



Question 27.

If Tn = sinnx + cosnx, prove that

2 T6 – 3 T4 + 1 = 0


Answer:

Given Tn = sinnx + cosnx


LHS = 2T6 – 3T4 + 1


= 2 (sin6x + cos6x) – 3 (sin4x + cos4x) + 1


= 2 (sin2x + cos2x) (sin4x + cos4x – cos2x sin2x) – 3 (sin4x + cos4x) + 1





We know that sin2x + cos2x = 1.


= 2 (1) (sin4x + cos4x – cos2x sin2x) – 3 (sin4x + cos4x) + 1


= 2sin4x + 2cos4x – 2sin2x cos2x – 3sin4x – 3cos4x + 1


= - (sin4x + cos4x) – 2sin2x cos2x + 1


= - (sin2x + cos2x) 2 + 1


= - 1 + 1


= 0


= RHS


Hence proved.




Question 28.

If Tn = sinnx + cosnx, prove that

6 T10 – 15 T8 + 10 T6 – 1 = 0


Answer:

Given Tn = sinnx + cosnx


LHS = 6T10 – 15 T8 + 10T6 – 1


= 6 (sin10x + cos10x) – 15 (sin8x + cos8x) + 10 (sin6x + cos6x) – 1


= 6 (sin6x + cos6x) (sin4x + cos4x) – cos4x sin4x (sin2x + cos2x) - 15 (sin6x + cos6x) (sin2x + cos2x) – cos2x sin2x (sin4x + cos4x) + 10 (sin2x + cos2x) (sin4x + cos4x – cos2x sin2x) – 1


We know that sin2x + cos2x = 1.


= 6 [(1 – 3 sin2x cos2x) (1 – 2 sin2x cos2x) – sin4x cos4x] - 15 [(1 – 3 sin2x cos2x) – sin2x cos2x (1 – 2 sin2x cos2x)] + 10 (1 – 3 sin2x cos2x) – 1


= 6 (1 – 5 sin2x cos2x + 5 sin4x cos4x) – 15 (1 – 4 sin2x cos2x + 2 sin4x cos4x) + 10 (1 – 3 sin2x cos2x) – 1


= 6 – 30 sin2x cos2x + 30 sin4x cos4x – 15 + 60 sin2x cos2x - 30 sin4x cos4x + 10 – 30 sin2x cos2x – 1


= 6 – 15 + 10 – 1


= 0


= RHS


Hence proved.




Exercise 5.2
Question 1.

Find the values of the other five trigonometric functions in each of the following:

cot in quadrant III


Answer:

Given cotx = 12/5 andx is in quadrant III


In third quadrant, tanx and cotx are positive and sinx, cosx and secx & cosecx are negative.


We know that














Question 2.

Find the values of the other five trigonometric functions in each of the following:

cos in quadrant II


Answer:

Given cotx = -1/2 andx is in quadrant II


In second quadrant, sinx and cosecx are positive and tanx, cotx and cosx & secx are negative.


We know that











Question 3.

Find the values of the other five trigonometric functions in each of the following:

tan in quadrant III


Answer:

Given tanx = 3/4 andx is in quadrant III


In third quadrant, tanx and cotx are positive and sinx, cosx, secx and cosecx are negative.


We know that














Question 4.

Find the values of the other five trigonometric functions in each of the following:

sin in quatrant I


Answer:

Given sinx = 3/5 andx is in first quadrant.


In first quadrant, all trigonometric ratios are positive.


We know that











Question 5.

If sin and lies in the second quadrant, find the value of secx + tanx.


Answer:

Given sinx = 12/13 andx lies in the second quadrant.


In second quadrant, sinx and cosecx are positive and all other ratios are negative.


We know that







We know that tanx = sinx /cosx and secx = 1/cosx








Question 6.

If sin tan and find the value of 8 tan


Answer:

Given sinx = 3/5, tan y = 1/2 and


Thus, x is in second quadrant and y is in third quadrant.


In second quadrant, cosx and tanx are negative.


In third quadrant, sec y is negative.


We know that








We know that











Question 7.

If sinx + cosx = 0 andx lies in the fourth quadrant, find sinx and cosx.


Answer:

Given sinx + cosx = 0 andx lies in fourth quadrant.


⇒sinx = -cosx



∴ tanx = -1


In fourth quadrant, cosx and secx are positive and all other ratios are negative.


We know that











Question 8.

If cos and find the values of other five trigonometric functions and hence evaluate


Answer:

Given cosx= -3/5 and π <x < 3π/2


It is in the third quadrant. Here, tanx and cotx are positive and all other rations are negative.


We know that


















Exercise 5.3
Question 1.

Find the values of the following trigonometric ratios:



Answer:

Given sin




300° lies in fourth quadrant in which sine function is negative.







Question 2.

Find the values of the following trigonometric ratios:

sin 17 π


Answer:

Given sin 17π


⇒ sin 17π =sin 3060°


⇒ 3060° =90° × 34 + 0°


3060° is in negative direction of x-axis i.e. on boundary line of II and III quadrants.


∴ sin (3060°)= sin(90° × 34 + 0°)


= -sin 0°


= 0



Question 3.

Find the values of the following trigonometric ratios:



Answer:

Given tan(11π/6)



=330°


330° lies in fourth quadrant in which tangent function is negative.



=tan (90° × 3+60°)


=-cot 60°


=



Question 4.

Find the values of the following trigonometric ratios:



Answer:

Given



⇒ cos (-1125°) = cos (1125°)


= cos (90° × 12 + 45°)


1125° lies in first quadrant in which cosine function is positive.


∴ cos (1125°) = cos (90°× 12 + 45°)


= cos (45°)


= 1/√2



Question 5.

Find the values of the following trigonometric ratios:



Answer:

Given tan 7π/4



⇒ 315° = (90° × 3 + 45°)


315° lies in fourth quadrant in which tangent function is negative.


∴ tan (315°) = tan (90° × 3 + 45°)


=-cot 45°


=-1



Question 6.

Find the values of the following trigonometric ratios:



Answer:

Given



⇒ 510° = (90° × 5 + 60°)


510° lies in second quadrant in which sine function is positive.


∴sin (510°) = sin (90° × 5 + 60°)


= cos (60°)


= 1/2



Question 7.

Find the values of the following trigonometric ratios:



Answer:

Given



⇒ 570° = (90° × 6 + 30°)


570° lies in third quadrant in which cosine function is negative.


∴ cos (570°) = cos (90° × 6 + 30°)


= -cos (30°)




Question 8.

Find the values of the following trigonometric ratios:



Answer:

Given



⇒ -sin 330° = -sin (90° × 3 + 60°)


330° lies in the fourth quadrant in which the sine function is negative.


∴ sin (-330)° = -sin (90° × 3 + 60°)


= - (-cos 60°)


= - (-1/2)


= 1/2



Question 9.

Find the values of the following trigonometric ratios:



Answer:

Given



⇒ cosec (-1200°) = cosec (1200°)


=cosec (90° × 13 + 30)


1200° lies in second quadrant in which cosec function is positive.


∴ cosec (-1200°)= -cosec (90° × 13 + 30°)


= -sec 30°




Question 10.

Find the values of the following trigonometric ratios:



Answer:

Given



⇒ -tan 585° = -tan (90° × 6 + 45°)


585° lies in the third quadrant in which the tangent function is positive.


∴ tan (-585)° = -tan (90° × 6 + 45°)


= - (tan 45°)


= -1



Question 11.

Find the values of the following trigonometric ratios:



Answer:

Given



⇒ 855° = 90° × 9 + 45°


855° lies in the second quadrant in which the cosine function is negative.


∴ cos 855° = cos (90° × 9 + 45°)


= -sin 45°




Question 12.

Find the values of the following trigonometric ratios:



Answer:

Given



⇒ sin 1845° = 90° × 20 + 45°


1845° lies in the first quadrant in which the sine function is positive.


∴ sin 1845° = sin (90° × 20 + 45°)


= sin 45°




Question 13.

Find the values of the following trigonometric ratios:



Answer:

Given



⇒ 1755° = 90° × 19 + 45°


1755° lies in the fourth quadrant in which the cosine function is positive.


∴ cos 1755° = cos (90° × 19 + 45°)


= sin 45°




Question 14.

Find the values of the following trigonometric ratios:



Answer:

Given



⇒ sin 4530° = 90° × 50 + 30°


4530° lies in the third quadrant in which the sine function is negative.


∴ sin 4530° = sin (90° × 50 + 30°)


= - sin 30°


= -1/2



Question 15.

prove that :

tan 225o cot 405o + tan 765o cot 675o = 0


Answer:

LHS = tan 225° cot 405° + tan 765° cot 675°


= tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°)


We know that when n is odd, cottan.


= tan 45° cot 45° + tan 45° [-tan 45°]


= tan 45° cot 45° - tan 45° tan 45°


= 1 × 1 – 1 × 1


= 1 – 1


= 0


= RHS


Hence proved.



Question 16.

prove that :



Answer:

LHS


= sin 480° cos 690° + cos 780° sin 1050°


= sin (90° × 5 + 30°) cos (90° × 7 + 60°) + cos (90° × 8 + 60°) sin (90° × 11 + 60°)


We know that when n is odd, sincos and cossin.


= cos 30° sin 60° + cos 60° [-cos 60°]



= 3/4 - 1/4


= 2/4


= 1/2


= RHS


Hence proved.



Question 17.

prove that :

cos 24o + cos 55o + cos 125o + cos 204o + cos 300o =


Answer:

LHS = cos 24° + cos 55° + cos 125° + cos 204° + cos 300°


= cos 24° + cos (90° × 1 – 35°) + cos (90° × 1 + 35°) + cos (90° × 2 + 24°) + cos (90° × 3 + 30°)


We know that when n is odd, cossin.


= cos 24° + sin 35° - sin 35° - cos 24° + sin 30°


= 0 + 0 + 1/2


= 1/2


= RHS


Hence proved.



Question 18.

prove that :

tan (-225o) cot (-405o) – tan (-765o) cot (675o) = 0


Answer:

LHS = tan (-225o) cot (-405o) – tan (-765o) cot (675o)


We know that tan (-x) = -tan (x) and cot (-x) = -cot (x).


= [-tan (225°)] [-cot (405°)] – [-tan (765°)] cot (675°)


= tan (225°) cot (405°) + tan (765°) cot (675°)


= tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°)


= tan 45° cot 45° + tan 45° [-tan 45°]


= 1 × 1 + 1 × (-1)


= 1 – 1


= 0


= RHS


Hence proved.



Question 19.

prove that :

cos 570o sin 510o + sin (-330o) cos (-390o) = 0


Answer:

LHS = cos 570o sin 510o + sin (-330o) cos (-390o)


We know that sin (-x) = -sin (x) and cos (-x) = +cos (x).


= cos 570o sin 510o + [-sin (330o)] cos (390o)


= cos 570o sin 510o - sin (330o) cos (390o)


= cos (90° × 6 + 30°) sin (90° × 5 + 60°) – sin (90° × 3 + 60°) cos (90° × 4 + 30°)


We know that cos is negative at 90° + θ i.e. in Q2 and when n is odd, sincos and cossin.


= -cos 30° cos 60° - [-cos 60°] cos 30°


= -cos 30° cos 60° + cos 60° cos 30°


= 0


= RHS


Hence proved.



Question 20.

prove that :



Answer:

LHS




= tan (90° × 7 + 30°) – 2 sin (90° × 1 + 30°) – 3/4 [cosec 45°]2 + 4 [cos (90° × 5 + 60°)]2


We know that tan and cos is negative at 90° + θ i.e. in Q2 and when n is odd, tancot, sincos and cossin.


= [-cot 30°] – 2 cos 30° - 3/4 [cosec 45°]2 + [-sin 60°]2


= - cot 30° - 2 cos 30° - 3/4 [cosec 45°]2 + [sin 60°]2





= RHS


Hence proved.



Question 21.

prove that :



Answer:

LHS



= 3 sin 30° sec 60° - 4 sin 150° cot 45°


= 3 sin 30° sec 60° - 4 sin (90° × 1 + 60°)cot 45°


We know that when n is odd, sincos.


= 3 sin 30° sec 60° - 4 cos 60° cot 45°


= 3 (1/2) (2) – 4 (1/2) (1)


= 3 – 2


= 1


= RHS


Hence proved.



Question 22.

Prove that :



Answer:

LHS




= 1


= RHS


Hence proved.



Question 23.

Prove that :



Answer:

LHS



We know that when n is odd, cosecsec and also sec (-x) = secx.




= 1 + 1


= 2


= RHS


Hence proved.



Question 24.

Prove that :



Answer:

LHS



We know that cosec (-x) = -cosecx.



We know that when n is odd, cossin, tancot and sincos.






= 1


= RHS


Hence proved.



Question 25.

Prove that :



Answer:

LHS


= {1 + cotx – (-cosecx)} {1 + cotx + (-cosecx)}


= {1 + cotx + cosecx} {1 + cotx – cosecx}


= {(1 + cotx) + (cosecx)} {(1 + cotx) – (cosecx)}


We know that (a + b) (a – b) = a2 – b2


= (1 + cotx)2 – (cosecx)2


= 1 + cot2x + 2 cotx – cosec2x


We know that 1 + cot2x = cosec2x


= cosec2x + 2 cotx – cosec2x


= 2 cotx


= RHS


Hence proved.



Question 26.

Prove that :



Answer:

LHS



We know that sin (-x) = -sinx.



We know that when n is odd, tancot and cosecsec.




= 1


= RHS


Hence proved.



Question 27.

Prove that :



Answer:

LHS




We know that when n is odd, sincos.




We know that sin2 + cos2x = 1.


= 1 + 1


= 2


= RHS


Hence proved.



Question 28.

Prove that :



Answer:

LHS



We know that sec (-x) = sec (x) and tan (-x) = -tan (x).




We know that when n is odd, seccosec and tancot.


= [-cosecx] [cosecx] - [-cotx] [cotx]


= -cosec2x + cot2x


= - [cosec2x – cot2x]


We know that cosec2x – cot2x = 1


= -1


= RHS


Hence proved.



Question 29.

In a ∆ABC, prove that :

i. cos (A + B) + cos C = 0

ii.

iii.


Answer:

We know that in ΔABC, A + B + C = π


(i) Here A + B = π – C


LHS = cos (A + B) + cos C


= cos (π – C) + cos C


We know that cos (π – C) = -cos C


= -cos C + cos C


= 0


= RHS


Hence proved.


(ii) ⇒ A + B = π – C




LHS



We know that



= RHS


Hence proved.


(iii)


⇒ A + B = π – C




LHS



We know that



= RHS


Hence proved



Question 30.

If A, B, C, D be the angles of a cyclic quadrilateral taken in order prove that :

cs(180o – A) + cos (180o + B) + cos (180o + C) – sin (90o + D) = 0


Answer:

Given A, B, C and D are the angles of a cyclic quadrilateral.


∴ A + C = 180° and B + D = 180°


⇒ A = 180° – C and B = 180° - D


Now, LHS = cos (180o – A) + cos (180o + B) + cos (180o + C) – sin (90o + D)


= -cos A + [-cos B] + [-cos C] + [-cos D]


= -cos A – cos B – cos C – cos D


= -cos (180° - C) – cos (180° - D) – cos C – cos D


= -[-cos C] – [-cos D] – cos C – cos D


= cos C + cos D – cos C – cos D


= 0


= RHS


Hence proved.



Question 31.

Find x from the following equations:



Answer:


⇒ cosec (90° + θ) +x cos θ cot (90° + θ) = cos θ


We know that when n is odd, cot → tan.


⇒ sec θ +x cos θ [-tan θ] = cos θ


⇒ sec θ –x cos θ tan θ = cos θ


⇒ sec θ –x cos θ (sin θ/ cos θ) = cos θ


⇒ sec θ –x sin θ = cos θ


⇒ sec θ – cos θ =x sin θ




We know that 1 – cos2 θ = sin2 θ




⇒ tan θ =x


∴x = tan θ



Question 32.

Find x from the following equations:



Answer:

Given


⇒x cot (90° + θ) + tan (90° + θ) sin θ + cosec (90° + θ) = 0


⇒x [-tan θ] + [-cot θ] sin θ + sec θ = 0





⇒ -x sin θ – cos2 θ + 1 = 0


We know that 1 – cos2 θ = sin2 θ


⇒ -x sin θ + sin2 θ = 0


⇒x sin θ = sin2 θ


⇒x = sin2 θ/ sin θ


∴x = sin θ



Question 33.

Prove that:



Answer:

LHS


= tan 720° - cos 270° - sin 150° cos 120°


= tan (90° × 8 + 0°) – cos (90° × 3 + 0°) – sin (90° × 1 + 60°) cos (90° × 1 + 30°)


We know that when n is odd, cossin and sincos.


= tan 0° - sin 0° - cos 60° [-sin 30°]


= tan 0° - sin ° + cos 60° sin 30°


= 0 – 0 + 1/2 (1/2)


= 1/4


= RHS


Hence proved.



Question 34.

Prove that:



Answer:

LHS


= sin 780° sin 480° + cos 120° sin 150°


= sin (90° × 8 + 60°) sin (90° × 5 + 30°) + cos (90° × 1 + 30°) sin (90° × 1 + 60°)


We know that when n is odd, cossin and sincos.


= sin 60° cos 30° + [-sin 30°] cos 60°


= sin 60° cos 30° - sin 30° cos 60°


We know that sin A cos B – cos A sin B = sin (A – B)


= sin (60° - 30°)


= sin 30°


= 1/2


= RHS


Hence proved.



Question 35.

Prove that:



Answer:

LHS


= sin 780° sin 120° + cos 240° sin 390°


= sin (90° × 8 + 60°) sin (90° × 1 + 30°) + cos (90° × 2 + 60°) sin (90° × 4 + 30°)


We know that when n is odd, sincos.


= sin 60° cos 30° + [-cos 60°] sin 30°


= sin 60° cos 30° - sin 30° cos 60°


We know that sin A cos B – cos A sin B = sin (A – B)


= sin (60° - 30°)


= sin 30°


= 1/2


= RHS


Hence proved.



Question 36.

Prove that:



Answer:

LHS


= sin 600° cos 390° + cos 480° sin 150°


= sin (90° × 6 + 60°) cos (90° × 4 + 30°) + cos (90° × 5 + 30°) sin (90° × 1 + 60°)


We know that when n is odd, sincos and cossin.


= [-sin 60°] cos 30° + [-sin 30°] cos 60°


= -sin 60° cos 30° - sin 30° cos 60°


= -[sin 60° cos 30° + cos 60° sin 30°]


We know that sin A cos B + cos A sin B = sin (A + B)


= -sin (60° + 30°)


= -sin 90°


= -1


= RHS


Hence proved.



Question 37.

Prove that:








Answer:

LHS


= tan 225° cot 405° + tan 765° cot 675°


= tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°)


We know that when n is odd, cottan.


= tan 45° cot 45° + tan 45° [-tan 45°]


= tan 45° cot 45° - tan 45° tan 45°


= 1 × 1 – 1 × 1


= 1 – 1


= 0


= RHS


Hence proved.




Very Short Answer
Question 1.

Write the maximum and minimum values of cos (cos x).


Answer:

Let cos x = t

Range of t =(-1,1)


∴ Maximum and Minimum value of cos x is 1 and -1 respectively.


Now,


cos(-x) = cos x


∴ Range of cos(cos x) = [cos(1),cos(0)]


⇒ cos(cos x) = [cos1,0]



Question 2.

Write the maximum and minimum values of sin (sin x).


Answer:

sin(x) has maximum value at x = π/2 and its minimum at


x = -π/2 which are 1 and -1 respectively.


As 1 < π/2;


so, the argument of the outer sin always lies within the interval


[-π/2, π/2]


So the maximum and minimum of the given function are


sin 1 and - sin 1.



Question 3.

Write the maximum value of sin (cos x).


Answer:

Value of cos(x) varies from -1 to 1 for all R and sin(x) is increasing in [-π/2,π/2]


∴ sin(cos x) has max value of sin1.



Question 4.

If sin x = cos2 x, then write the value of cos2 x (1 + cos2 x).


Answer:

Given sin x = cos2x


To find the value of cos2 x (1 + cos2 x).


⇒ cos2 x (1 + cos2 x).


⇒ cos2 x + cos4 x.


As cos2x = 1- sin2x the above equation becomes


⇒ 1- sin2x + sin2x


⇒ 1.



Question 5.

If sin x = cosec x = 2, then write the value of sinn x + cosecn x.


Answer:

(Question might be different)

sin x+ cosec x = 2



⇒ sin2x +1 = 2sin x


⇒ sin2x - 2sin x+1 = 0


⇒ (sin x-1)2=0


⇒ sin x = 1


As sin x = 1


sinnx = 1


∴ sinn x + cosecnx



⇒ 2.



Question 6.

If sin x + sin2 x = 1, then write the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.


Answer:

Given: sin x + sin2x = 1


To find the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.


⇒ sin x = 1 – sin2x


⇒ sin x = cos2x


⇒ cos12x = sin6x, cos10x = sin5x, cos8x = sin4x, cos6x = sin3x.


Substituting above values in given equation we get


⇒ sin6x + 3sin5x + 3sin8x + sin3x [(a+b)3 = a3+3a2b+3ab2+b3]


⇒ (sin x + sin2 x)3 = (1)3


⇒ 1.



Question 7.

If sin x + sin2 x = 1, then write the value of cos8 x + 2 cos6 x + cos4 x.


Answer:

Given: sin x + sin2x = 1


To find the value of cos8 x + 2 cos6 x + cos4 x.


⇒ sin x = 1 – sin2x


⇒ sin x = cos2x


⇒ cos8x = sin4x, cos6x = sin3x, cos4x = sin2x .


Substituting above values in given equation we get


⇒ sin4x+2 sin3x+ sin2x [(a+b)2 = a2+2ab+b2]


⇒ (sin x + sin2 x)2 = (1)2


⇒ 1



Question 8.

If sin θ1 + sin θ2 + sin θ3 = 3, then write the value of cos θ1 + cos θ2 + cos θ3.


Answer:

Given that sin θ1 + sin θ2 + sin θ3 = 3


We know that in general the maximum value of sin θ = 1 when θ = π/2


As sin θ1 + sin θ2 + sin θ3 = 3


⇒ θ1= θ2 = θ3 = π/2.


The above case is the only possible condition for the given condition to satisfy.


∴ cos θ1 + cos θ2 + cos θ3


⇒ cos π/2 + cos π/2 + cos π/2


⇒ 0+0+0


⇒ 0.



Question 9.

Write the value of sin 10° + sin 20° + sin 30° + ... + sin 360°.


Answer:

We know sin(180+θ ) = -sin θ


Also, sin(360-θ ) = -sin θ


Given all angles are complementary in nature.


sin350 = sin(360-10) = -sin10°


so finally each of them cancel each other and finally we get


the sum equal to 0.



Question 10.

A circular wire of radius 15 cm is cut and bent so as to lie along the circumference of a loop of radius 120 cm. Write the measure of the angle subtended by it at the centre of the loop.


Answer:

Let the angle subtended be θ.

For calculating we have the formula




⇒ θ = 45°



Question 11.

Write the value of 2 (sin6 x + cos6 x) − 3 (sin4 x + cos4 x) + 1.


Answer:

sin6x + cos6x = (sin2x)3 + (cos2x)3


=(sin2x + cos2x)(sin4x+cos4x-sin2xcos2x)


= 1 (sin4x + cos4x – sin2xcos2x)


Substituting above value in given equation


⇒ 2(sin4x + cos4x – sin2xcos2x)-3(sin4 x + cos4 x)+1


⇒ 2sin4x + 2cos4x – 2sin2xcos2x – 3sin4x-3cos4x+1.


⇒ -sin4x-cos4x-2sin2xcos2x+1


⇒ -[(sin2x)2+(cos2x)2-2sin2xcos2x]+1


⇒ -[( sin2x + cos2x)2]+1


⇒ -1+1


⇒ 0.



Question 12.

Write the value of cos 1° + cos 2° + cos 3° + ... + cos 180°.


Answer:

The given expression can be rearranged as:


(Cos 1 + cos 179) + (cos2 + cos 178) + (cos3+ cos177) +…. + (cos89 + cos 91) + (cos90) + cos180


We know that: cos(180 - x)= - cos x.


So all the bracket totals except last 2 terms will be zero.


So given expression is: 0 + (cos90) + ( cos180)


= 0 + 0 + (-1)


=-1.



Question 13.

If cot (α + β) = 0, then write the value of sin (α + 2β).


Answer:

Given: cot(α + β) = 0



⇒ cotα.cotβ = 1




Now,


Sin(α +2β ) = sinα.cos2β + cosα.sin2β


=sin α (2 cos2 β-1)+cos α.2 sin β.cos β



Question 14.

If tan A + cot A = 4, then write the value of tan4 A + cot4 A.


Answer:

Given: tanA + cotA = 4



Squaring both sides we get





Squaring both sides we get






Question 15.

Write the least value of cos2 x + sec2 x.


Answer:

We know that cos2x and sec2x ≥ 0


∴ By applying AM and GM we get,



⇒ cos2 x + sec2 x≥2


∴ Least value of the given function is 2.



Question 16.

If x = sin14x + cos20 x, then write the smallest interval in which the value of x lie.


Answer:

We know the range of sin x is


-1≤ sin x ≤ 1


∴ 0≤ sin14x ≤ 1


We know the range of cos x is


-1≤ cos x ≤ 1


∴ 0≤ cos20x ≤ 1


0< sin14x + cos20x≤2


which means that the value of x lies in the interval [0,2]


But there's a problem, when sine is 0 cosine is 1, they might even be 0 and -1 at particular points (not in this case, since they are even powers), so the minimum we would get should be more than 0. Hence the value of x lies in (0,1]



Question 17.

If 3 sin x + 5 cos x = 5, then write the value of 5 sin x − 3 cos x.


Answer:

⇒ 3 sin x +5cos x = 5


⇒ 3sin x = 5-5cos x


⇒ 3sin x = 5(1-cos x)


Squaring both sides we get


⇒ 9sin2x = 25(1-cos x)2


⇒ 9sin2x = 25(1+cos2x-2cos x)


⇒ 9sin2x+9cos2x = 25 + 25cos2x - 50cos x + 9cos2x


⇒ 9(sin2x+ cos2x) = 25 +34cos2x-50cos x


⇒ 34cos2x-50cos x+16=0


⇒ 17cos2x-25cos x+8=0


⇒ 17cos2x-17cos x-8cos x+8=0


⇒ 17cos x(cos x-1)-8(cos x-1)=0



When cos x = 1


3sin x + 5cos x = 5


3sin x = 0


Sin x = 0


Substituting the value cos x = 1 and sin x = 0


5(0)-3(1) = 0-3


⇒ -3.



⇒ sin2x+ cos2x = 1


⇒ sin2x = 1- cos2x





⇒ 5sin x – 3cos x




∴ -3 and 3.




Mcq
Question 1.

Mark the correct alternative in the following:

If , then sec x − tan x is equal to

A.

B.

C. 2x

D.


Answer:







⇒ sec x – tan x




⇒ sec x – tan x



⇒ -2x


∴ the value of sec x – tan x = -2x, 1/2x.


Question 2.

Mark the correct alternative in the following:

If , then sec x + tan x =

A.

B.

C.

D.


Answer:







⇒ sec x – tan x




⇒ sec x – tan x



⇒ 2x


∴ the value of sec x – tan x = 2x, 1/2x.


Question 3.

Mark the correct alternative in the following:

If , then is equal to

A. sec x − tan x

B. sec x + tan x

C. tan x − sec x

D. none of these


Answer:

Given:



Now


(Rationalizing we get)






⇒ sec x – tan x


In the given range tan x = -tan x and sec x is –sec x


∴ -sec x-(-tan x)


⇒ tan x – sec x


Question 4.

Mark the correct alternative in the following:

If π < x < 2 π, then is equal to

A. cosec x + cot x

B. cosec x − cot x

C. − cosec x + cot x

D. − cosec x − cot x


Answer:

Given:


⇒ π<x<2π


Now


(Rationalizing we get)






⇒ cosec x + cot x


In the given range cot x = -cot x and cosec x is –cosec x


∴ -cosec x-(+cot x)


⇒ -cosec x – cot x


Question 5.

Mark the correct alternative in the following:

If , and if , then y is equal to

A.

B.

C.

D.


Answer:




If 0 < x < π/2 then we take . So, that square root


is open with positive sign.



Adding 1 on both sides








Question 6.

Mark the correct alternative in the following:

If , then is equal to

A. 2 sec x

B. − 2 sec x

C. sec x

D. − sec x


Answer:










Question 7.

Mark the correct alternative in the following:

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of

A. θ, ϕ

B. r, θ

C. r, ϕ

D. r


Answer:

Given:


X = r sin θ cos ϕ


Y = r sin θ sin ϕ


Z = r cos θ


⇒ x2+y2+z2


⇒ (r sin θ cos ϕ )2 + (r sin θ sin ϕ) 2 + (r cos θ )2


⇒ r2sin2θcos2ϕ + r2sin2θsin2ϕ + r2cos2θ


⇒ r2sin2θ(cos2ϕ+ sin2ϕ) + r2cos2θ


⇒ r2sin2θ + r2cos2θ


⇒ r2(sin2θ + cos2θ)


⇒ r2.


∴ It is independent of θ and ϕ .


Question 8.

Mark the correct alternative in the following:

If , then x is equal to

A.

B.

C.

D.


Answer:

Given: tan x + sec x = √3


squaring on both sides


(tan x + sec x)2 = √32


tan2x+sec2x+2 tan x sec x = 3


Also, sec2x - tan2x = 1


tan2x + 1+ tan2x+ 2tan x sec x = 3


2tan2x+2tan x sec x = 3-1


tan2x+tan x sec x = 2/2


tan2x+tan x sec x = 1


tan x sec x = 1 - tan2x


again, squaring on both sides


tan2x sec2x = 1 + tan4x - 2 tan2x


(1+ tan2x) tan2x = 1 + tan4x - 2 tan2x


Tan4x + tan2x = 1 + tan4x - 2 tan2x


3 tan2x = 1


tan x = 1/√3


x = π/6.


Question 9.

Mark the correct alternative in the following:

If and x lies in the IV quadrant, then the value of cos x is

A.

B.

C.

D.


Answer:

In IV quadrant cos x is positive


We know


tan2x + 1 =sec2x







Question 10.

Mark the correct alternative in the following:

If , then is equal to

A. 1 − cot α

B. 1 + cot α

C. − 1 + cot α

D. − 1 − cot α


Answer:

Given:





We know csc2α = cot2α +1




⇒ cotα +1


In the given range cot is negative


∴ -1-cotα


Question 11.

Mark the correct alternative in the following:

sin6 A + cos6 A + 3 sin2 A cos2 A =

A. 0

B. 1

C. 2

D. 3


Answer:

sin6A + cos6A = (sin2A)3 + (cos2A)3


=(sin2A+ cos2A)(sin4A+cos4A-sin2Acos2A)


= 1 (sin4A + cos4A – sin2Acos2A)


∴ sin4A + cos4A – sin2Acos2A+ 3 sin2 A cos2 A


⇒ sin4A + cos4A + 2sin2Acos2A


⇒ (sin2A + cos2A)2


= 12


=1


Question 12.

Mark the correct alternative in the following:

If , then cos x is equal to

A.

B.

C.

D.


Answer:

Given:


Let cosec x =a, cot x = b


∴ According to the question



But, cosec2x –cot2x =1


⇒ a2 – b2 = 1


⇒ (a-b) (a + b) = 1



⇒ a + b=2


a-b =1/2 …(1)


a + b =2 …(2)


Adding (1) and (2)


2a = 1/2+2


⇒ a = 5/4




Cos2x = 1 – sin2x





Question 13.

Mark the correct alternative in the following:

If , then tan x =

A.

B.

C.

D.


Answer:

Let cosec x =a, cot x = b


∴ According to the question



But, cosec2x –cot2x =1


⇒ a2 – b2 = 1


⇒ (a-b)(a + b) = 1






Adding (1) and (2)








Question 14.

Mark the correct alternative in the following:

is true if and only if

A.

B.

C. x = y

D.


Answer:

First of all we need to check the condition on x


If x = 0 then sec2x attains to infinity, so that condition must be true i.e x should not be zero


Again if x+y =0 then the RHS part becomes infinity so that condition must be true i.e. x+y should not be zero.


∴ Option B is the correct answer.


Question 15.

Mark the correct alternative in the following:

If x is an acute angle and , then the value of is

A. 3/4

B. 1/2

C. 2

D. 5/4


Answer:

Given x is an acute angle and value of tan x =1/√7.


⇒ We know tan2x + 1 = sec2x


⇒ Also, cot2x+1 = cosec2x





⇒ cot2 x=7


⇒ cot2x+1 = 7+1


=8


⇒ cosec2x = 8






Question 16.

Mark the correct alternative in the following:

The value of sin2 5° + sin2 10° + sin2 15° + … + sin2 85° + sin2 90° is

A. 7

B. 8

C. 9.5

D. 10


Answer:

=sin25+sin210+sin215+.......sin245+...........+sin275+sin280+sin285+sin290


We know that sin(90-x) =cos x


So sin2(90-x)= cos2x


=sin25+sin210+sin215+.......sin245+...........+cos215+cos210+cos25+sin290


And sin2x+cos2x= 1


So, in given series on rearranging terms we get 8 cases where sin2x+cos2x= 1


So, given changes to


8+sin245+sin290




= 9.5


Question 17.

Mark the correct alternative in the following:



A. 1

B. 4

C. 2

D. 0


Answer:

We know that sin(90-x) =cos x


So sin2(90-x)= cos2x






And sin2x+cos2x= 1


Rearranging we get,



=1+1


=2


Question 18.

Mark the correct alternative in the following:

If tan A + cot A = 4, then tan4 A + cot4 A is equal to

A. 110

B. 191

C. 80

D. 194


Answer:

Given: tan A + cot A = 4



Squaring both sides we get





Squaring both sides we get





=194


Question 19.

Mark the correct alternative in the following:

If x sin 45° cos2 60°, then x =

A. 2

B. 4

C. 8

D. 16


Answer:

According to the given question:




⇒ x =8.


Question 20.

Mark the correct alternative in the following:

If A lies in second quadrant and 3 tan A + 4 = 0, then the value of 2 cot A − 5 cos A + sin A is equal to

A. −53/10

B. 23/10

C. 37/10

D. 7/10


Answer:

Given:


3tanA +4 =0



tan2x + 1 = sec2x







Because in second quadrant cos is negative.



sin2x+cos2x= 1






∴ The value of 2 cot A − 5 cos A + sin A =







Question 21.

Mark the correct alternative in the following:

If , then tan x =

A. 21/22

B. 15/16

C. 44/117

D. 117/43


Answer:

Let cosec x =a, cot x = b


∴ According to the question



But, cosec2x –cot2x =1


⇒ a2 – b2 = 1


⇒ (a-b)(a + b) = 1




a + b =11/2 …(1)


a-b =2/11 …(2)


Adding (1) and (2)








Question 22.

Mark the correct alternative in the following:

If tan θ + sec θ = ex, then cos θ equals

A.

B.

C.

D.


Answer:

We know tan2x + 1 = sec2x…(1)


Let tan θ be a and sec θ be b


According to question


a + b =ex


Manipulating and Substituting in 1 we get


⇒ a2 – b2 = -1


⇒ (a-b)( a + b) = -1


⇒ (a-b).ex =-1


⇒ a-b = -e-x


a + b =ex


a-b = -e-x


subtracting above equations we get


2b =ex +e-x





Question 23.

Mark the correct alternative in the following:

If sec x + tan x = k, cos x =

A.

B.

C.

D.


Answer:

We know tan2x + 1 = sec2x…(1)


Let tan x be a and sec x be b


According to question


a + b =k


Manipulating and Substituting in 1 we get


⇒ a2 – b2 = -1


⇒ (a-b)( a + b) = -1


⇒ (a-b).k =-1


⇒ a-b = -k-1


a + b =k


a-b = -k-1


subtracting above equations we get


2b =k +k-1





Question 24.

Mark the correct alternative in the following:

If , the

A. f(x) < 1

B. f(x) = 1

C. 2 < f(x) < 1

D. f(x) ≥ 2


Answer:

tan2x + 1 = sec2x


sin2x+cos2x= 1


∴ cos2x= 1 - sin2x


Substituting in f(x) we get


1 - sin2x+ tan2x + 1






Minimum value of is 0.


∴ f(x)≥ 2.


Question 25.

Mark the correct alternative in the following:

Which of the following is incorrect?

A. sin x = −1/5

B. cos x = 1

C. sec x = 1/2

D. tan x = 20


Answer:

Sec x = 1/2 is incorrect because for no real value of x sec x attains 1/2.


Question 26.

Mark the correct alternative in the following:

The value of cos 1° cos 2° cos 3° ... cos 179° is

A.

B. 0

C. 1

D. −1


Answer:

Cos 1 × cos 2 × cos 3 × ......× cos 179


= cos 1 × cos 2 × cos 3 × .....× cos 90 × ..... × cos 179


= cos 1 × cos 2 × cos 3 × .....× 0 × ..... × cos 179


= 0 × cos 1 × cos 2 × cos 3 × ....... × cos 179


= 0


Question 27.

Mark the correct alternative in the following:

The value of tan 1° tan 2° tan 3° ... tan 89° is

A. 0

B. 1

C. 1/2

D. not defined


Answer:

tan 1° tan 2° tan 3° ... tan 89° = tan (90° - 89° ) tan(90° - 88° ) tan(90° - 87°) ... tan(90° - 46° ) tan 45° tan 46° …. tan 89°


= cot 89° cot 88° cot 87° ….. cot 46° tan 45° tan 46° ….. tan 89°


(∵ tan(90° - θ ) = cot θ )



= tan 45°


= 1


Question 28.

Mark the correct alternative in the following:

Which of the following is correct?

A. sin 1° > sin 1

B. sin 1° < sin 1

C. sin 1° = sin 1

D.


Answer:



∴ 1rad = 57.32°


In Range 0 to π/2 sin x is an increasing function


∴ sin1 will always be greater than sin1°


Because sin1 = sin57.32°