Find the general solutions of the following equations :
i.
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
we have,
We know that sin 30° = sin π/6 = 0.5
∴
∵ it matches with the form sin x = sin y
Hence,
,where nϵZ
Find the general solutions of the following equations :
i.
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
we have,
We know that sin 30° = sin π/6 = 0.5
∴
∵ it matches with the form sin x = sin y
Hence,
,where nϵZ
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that, cos 150° =
∴
If cos x = cos y then x = 2nπ ± y, where n ∈ Z.
For above equation y = 5π / 6
∴ x = 2nπ ± 5π / 6 ,where nϵZ
Thus, x gives the required general solution for the given trigonometric equation.
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that, cos 150° =
∴
If cos x = cos y then x = 2nπ ± y, where n ∈ Z.
For above equation y = 5π / 6
∴ x = 2nπ ± 5π / 6 ,where nϵZ
Thus, x gives the required general solution for the given trigonometric equation.
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that sin x, and cosec x have negative values in the 3rd and 4th quadrant.
While giving a solution, we always try to take the least value of y
The fourth quadrant will give the least magnitude of y as we are taking an angle in a clockwise sense (i.e., negative angle)
-√2 = -cosec (π/4) = cosec (-π/4) { ∵ sin -θ = -sin θ }
∴
⇒
If sin x = sin y ,then x = nπ + (– 1)ny , where n ∈ Z.
For above equation y =
∴ x = nπ + (-1)n,where nϵZ
Or x = nπ + (-1)n+1,where nϵZ
Thus, x gives the required general solution for given trigonometric equation.
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that sin x, and cosec x have negative values in the 3rd and 4th quadrant.
While giving a solution, we always try to take the least value of y
The fourth quadrant will give the least magnitude of y as we are taking an angle in a clockwise sense (i.e., negative angle)
-√2 = -cosec (π/4) = cosec (-π/4) { ∵ sin -θ = -sin θ }
∴
⇒
If sin x = sin y ,then x = nπ + (– 1)ny , where n ∈ Z.
For above equation y =
∴ x = nπ + (-1)n,where nϵZ
Or x = nπ + (-1)n+1,where nϵZ
Thus, x gives the required general solution for given trigonometric equation.
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that sec x and cos x have positive values in the 1st and 4th quadrant.
While giving a solution, we always try to take the least value of y
both quadrants will give the least magnitude of y.
We can choose any one, in this solution we are assuming a positive value.
⇒
If cos x = cos y then x = 2nπ ± y, where n ∈ Z.
For above equation y = π / 4
∴ x = 2nπ ±,where nϵZ
Thus, x gives the required general solution for the given trigonometric equation.
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that sec x and cos x have positive values in the 1st and 4th quadrant.
While giving a solution, we always try to take the least value of y
both quadrants will give the least magnitude of y.
We can choose any one, in this solution we are assuming a positive value.
⇒
If cos x = cos y then x = 2nπ ± y, where n ∈ Z.
For above equation y = π / 4
∴ x = 2nπ ±,where nϵZ
Thus, x gives the required general solution for the given trigonometric equation.
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that tan x and cot x have negative values in the 2nd and 4th quadrant.
While giving solution, we always try to take the least value of y.
The fourth quadrant will give the least magnitude of y as we are taking an angle in a clockwise sense (i.e. negative angle)
If tan x = tan y then x = nπ + y, where n ∈ Z.
For above equation y =
∴ x = nπ +,w here nϵZ
Or x = nπ -,wh ere nϵZ
Thus, x gives the required general solution for the given trigonometric equation.
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that tan x and cot x have negative values in the 2nd and 4th quadrant.
While giving solution, we always try to take the least value of y.
The fourth quadrant will give the least magnitude of y as we are taking an angle in a clockwise sense (i.e. negative angle)
If tan x = tan y then x = nπ + y, where n ∈ Z.
For above equation y =
∴ x = nπ +,w here nϵZ
Or x = nπ -,wh ere nϵZ
Thus, x gives the required general solution for the given trigonometric equation.
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
We know that sec x and cos x have positive values in the 1st and 4th quadrant.
While giving solution, we always try to take the least value of y
both quadrants will give the least magnitude of y.
We can choose any one, in this solution we are assuming a positive value.
⇒
If cos x = cos y then x = 2nπ ± y, where n ∈ Z.
For above equation y = π / 6
∴ x = 2nπ ±,where nϵZ
Thus, x gives the required general solution for the given trigonometric equation.
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
We know that sec x and cos x have positive values in the 1st and 4th quadrant.
While giving solution, we always try to take the least value of y
both quadrants will give the least magnitude of y.
We can choose any one, in this solution we are assuming a positive value.
⇒
If cos x = cos y then x = 2nπ ± y, where n ∈ Z.
For above equation y = π / 6
∴ x = 2nπ ±,where nϵZ
Thus, x gives the required general solution for the given trigonometric equation.
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that sin x, and cos x have positive values in the 1st and 2nd quadrant.
While giving solution, we always try to take the least value of y
The first quadrant will give the least magnitude of y.
∴
If sin x = sin y then x = nπ + (– 1)n y, where n ∈ Z
Clearly on comparing we have y = π/3
⇒ ,where nϵZ….ans
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that sin x, and cos x have positive values in the 1st and 2nd quadrant.
While giving solution, we always try to take the least value of y
The first quadrant will give the least magnitude of y.
∴
If sin x = sin y then x = nπ + (– 1)n y, where n ∈ Z
Clearly on comparing we have y = π/3
⇒ ,where nϵZ….ans
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that cos x and sec x have positive values in the 1st and 4th quadrant.
While giving solution, we always try to take the least value of y
both quadrant will give the least magnitude of y. We prefer the first quadrant.
∴
If cos x = cos y then x = 2nπ ± y, where n ∈ Z
Clearly on comparing we have y = π/3
⇒ ,where nϵZ….ans
Find the general solutions of the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that cos x and sec x have positive values in the 1st and 4th quadrant.
While giving solution, we always try to take the least value of y
both quadrant will give the least magnitude of y. We prefer the first quadrant.
∴
If cos x = cos y then x = 2nπ ± y, where n ∈ Z
Clearly on comparing we have y = π/3
⇒ ,where nϵZ….ans
Find the general solutions of the following equations :
sin 9x = sin x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
Using transformation formula:
∴
⇒
∴ cos 5x = 0 or sin 4x = 0
If either of the equation is satisfied, the result will be 0
So we will find the solution individually and then finally combined the solution.
∴ cos 5x = 0
⇒ cos 5x = cos π/2
∴
,where n ϵ Z ………eqn 1
Also,
sin 4x = sin 0
Or ,where n ϵ Z ………eqn 2
From equation 1 and eqn 2,
or,where nϵZ ...ans
Find the general solutions of the following equations :
sin 9x = sin x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
Using transformation formula:
∴
⇒
∴ cos 5x = 0 or sin 4x = 0
If either of the equation is satisfied, the result will be 0
So we will find the solution individually and then finally combined the solution.
∴ cos 5x = 0
⇒ cos 5x = cos π/2
∴
,where n ϵ Z ………eqn 1
Also,
sin 4x = sin 0
Or ,where n ϵ Z ………eqn 2
From equation 1 and eqn 2,
or,where nϵZ ...ans
Find the general solutions of the following equations :
sin 2x = cos 3x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒ {∵ sin θ = cos (π/2 – θ) }
If cos x = cos y then x = 2nπ ± y, where n ∈ Z
Clearly on comparing we have y = 3x
∴
, or
∴ or
Hence,
…ans
Find the general solutions of the following equations :
sin 2x = cos 3x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒ {∵ sin θ = cos (π/2 – θ) }
If cos x = cos y then x = 2nπ ± y, where n ∈ Z
Clearly on comparing we have y = 3x
∴
, or
∴ or
Hence,
…ans
Find the general solutions of the following equations :
tan x + cot 2x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
We know that: cot θ = tan (π/2 – θ)
∴
⇒ { ∵ - tan θ = tan -θ }
If tan x = tan y, then x is given by x = nπ + y, where n ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒ ,where n ϵ Z …ans
Find the general solutions of the following equations :
tan x + cot 2x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
We know that: cot θ = tan (π/2 – θ)
∴
⇒ { ∵ - tan θ = tan -θ }
If tan x = tan y, then x is given by x = nπ + y, where n ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒ ,where n ϵ Z …ans
Find the general solutions of the following equations :
tan 3x = cot x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that: cot θ = tan (π/2 – θ)
∴
If tan x = tan y, then x is given by x = nπ + y, where n ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒
∴ ,where nϵZ …..ans
Find the general solutions of the following equations :
tan 3x = cot x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that: cot θ = tan (π/2 – θ)
∴
If tan x = tan y, then x is given by x = nπ + y, where n ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒
∴ ,where nϵZ …..ans
Find the general solutions of the following equations :
tan 2x tan x = 1
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
⇒
We know that: cot θ = tan (π/2 – θ)
∴
If tan x = tan y, then x is given by x = nπ + y, where n ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒
⇒ ,where nϵZ ….ans
Find the general solutions of the following equations :
tan 2x tan x = 1
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
⇒
We know that: cot θ = tan (π/2 – θ)
∴
If tan x = tan y, then x is given by x = nπ + y, where n ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒
⇒ ,where nϵZ ….ans
Find the general solutions of the following equations :
tan mx + cot nx = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
We know that: cot θ = tan (π/2 – θ)
∴
⇒ { ∵ - tan θ = tan -θ }
If tan x = tan y, then x is given by x = kπ + y, where k ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒
,where k ϵ Z …ans
Find the general solutions of the following equations :
tan mx + cot nx = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
We know that: cot θ = tan (π/2 – θ)
∴
⇒ { ∵ - tan θ = tan -θ }
If tan x = tan y, then x is given by x = kπ + y, where k ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒
,where k ϵ Z …ans
Find the general solutions of the following equations :
tan px = cot qx
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that: cot θ = tan (π/2 – θ)
∴
If tan x = tan y, then x is given by x = nπ + y, where n ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒
∴ ,where nϵZ
Find the general solutions of the following equations :
tan px = cot qx
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that: cot θ = tan (π/2 – θ)
∴
If tan x = tan y, then x is given by x = nπ + y, where n ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒
∴ ,where nϵZ
Find the general solutions of the following equations :
sin 2x + cos x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that: sin θ = cos (π/2 – θ)
∴
⇒
We know that: -cos θ = cos (π – θ)
∴
⇒
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
y =
∴
Hence,
or
∴ or
⇒ or
∴,where nϵZ
Find the general solutions of the following equations :
sin 2x + cos x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that: sin θ = cos (π/2 – θ)
∴
⇒
We know that: -cos θ = cos (π – θ)
∴
⇒
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
y =
∴
Hence,
or
∴ or
⇒ or
∴,where nϵZ
Find the general solutions of the following equations :
sin x = tan x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
⇒
⇒
either,
sin x = 0 or cos x = 1
⇒ sin x = sin 0 or cos x = cos 0
We know that,
If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z
∵ sin x = sin 0
∴ y = 0
And hence,
x = nπ where nϵZ
Also,
If cos x = cos y, implies x = 2mπ ±y, where m ∈ Z
∵ cos x = cos 0
∴ y = 0
Hence, x is given by
x = 2mπ where mϵZ
∴x = nπ or 2mπ ,where m,nϵZ …ans
Find the general solutions of the following equations :
sin x = tan x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
⇒
⇒
either,
sin x = 0 or cos x = 1
⇒ sin x = sin 0 or cos x = cos 0
We know that,
If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z
∵ sin x = sin 0
∴ y = 0
And hence,
x = nπ where nϵZ
Also,
If cos x = cos y, implies x = 2mπ ±y, where m ∈ Z
∵ cos x = cos 0
∴ y = 0
Hence, x is given by
x = 2mπ where mϵZ
∴x = nπ or 2mπ ,where m,nϵZ …ans
Find the general solutions of the following equations :
sin 3x + cos 2x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that: sin θ = cos (π/2 – θ)
∴
⇒
We know that: -cos θ = cos (π – θ)
∴
⇒
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
y =
∴
Hence,
or
∴ or
⇒ or
∴,where nϵZ
Find the general solutions of the following equations :
sin 3x + cos 2x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
We know that: sin θ = cos (π/2 – θ)
∴
⇒
We know that: -cos θ = cos (π – θ)
∴
⇒
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
y =
∴
Hence,
or
∴ or
⇒ or
∴,where nϵZ
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
As the equation is of 2nd degree, so we need to solve a quadratic equation.
First we will substitute trigonometric ratio with some variable k and we will solve for k
As, sin2 x = 1 – cos2 x
∴ we have,
⇒
⇒
Let, cos x = k
∴ 4k2 + 4k – 3 = 0
⇒ 4k2 -2k + 6k – 3
⇒ 2k(2k – 1) +3(2k – 1) = 0
⇒ (2k – 1)(2k + 3) = 0
∴ k =1/2 or k = -3/2
⇒ cos x = � or cos x = -3/2
As cos x lies between -1 and 1
∴ cos x can’t be -3/2
So we ignore that value.
∴ cos x = �
⇒ cos x = cos 60° = cos π/3
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
On comparing our equation with standard form, we have
y = π/3
∴ where nϵZ ..ans
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
As the equation is of 2nd degree, so we need to solve a quadratic equation.
First we will substitute trigonometric ratio with some variable k and we will solve for k
As, sin2 x = 1 – cos2 x
∴ we have,
⇒
⇒
Let, cos x = k
∴ 4k2 + 4k – 3 = 0
⇒ 4k2 -2k + 6k – 3
⇒ 2k(2k – 1) +3(2k – 1) = 0
⇒ (2k – 1)(2k + 3) = 0
∴ k =1/2 or k = -3/2
⇒ cos x = � or cos x = -3/2
As cos x lies between -1 and 1
∴ cos x can’t be -3/2
So we ignore that value.
∴ cos x = �
⇒ cos x = cos 60° = cos π/3
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
On comparing our equation with standard form, we have
y = π/3
∴ where nϵZ ..ans
Solve the following equations :
2 cos2 x – 5 cos x + 2 =0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
2 cos2 x – 5 cos x + 2 =0
As the equation is of 2nd degree, so we need to solve a quadratic equation.
First we will substitute trigonometric ratio with some variable k and we will solve for k
Let, cos x = k
∴ 2k2 – 5k + 2 = 0
⇒ 2k2 – 4k – k +2 = 0
⇒ 2k(k – 2) -1(k -2) = 0
⇒ (k – 2)(2k - 1) = 0
∴ k = 2 or k = �
⇒ cos x = 2 {which is not possible} or cos x = � (acceptable)
∴ cos x = �
⇒ cos x = cos 60° = cos π/3
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
On comparing our equation with standard form, we have
y = π/3
∴ where nϵZ ..ans
Solve the following equations :
2 cos2 x – 5 cos x + 2 =0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
2 cos2 x – 5 cos x + 2 =0
As the equation is of 2nd degree, so we need to solve a quadratic equation.
First we will substitute trigonometric ratio with some variable k and we will solve for k
Let, cos x = k
∴ 2k2 – 5k + 2 = 0
⇒ 2k2 – 4k – k +2 = 0
⇒ 2k(k – 2) -1(k -2) = 0
⇒ (k – 2)(2k - 1) = 0
∴ k = 2 or k = �
⇒ cos x = 2 {which is not possible} or cos x = � (acceptable)
∴ cos x = �
⇒ cos x = cos 60° = cos π/3
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
On comparing our equation with standard form, we have
y = π/3
∴ where nϵZ ..ans
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
2sin2 x +√3 cos x + 1 = 0
As the equation is of 2nd degree, so we need to solve a quadratic equation.
First we will substitute trigonometric ratio with some variable k and we will solve for k
As, sin2 x = 1 – cos2 x
∴ we have,
⇒
⇒
Let, cos x = k
∴ 2k2 - √3 k – 3 = 0
⇒ 2k2 -2√3 k + √3 k – 3 = 0
⇒ 2k(k – √3) +√3(k – √3) = 0
⇒ (2k + √3)(k - √3) = 0
∴ k = √3 or k = -√3/2
⇒ cos x = √3 or cos x = -√3/2
As cos x lies between -1 and 1
∴ cos x can’t be √3
So we ignore that value.
∴ cos x = -√3/2
⇒ cos x = cos 150° = cos 5π/6
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
On comparing our equation with standard form, we have
y = 5π/6
∴ where nϵZ ..ans
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
2sin2 x +√3 cos x + 1 = 0
As the equation is of 2nd degree, so we need to solve a quadratic equation.
First we will substitute trigonometric ratio with some variable k and we will solve for k
As, sin2 x = 1 – cos2 x
∴ we have,
⇒
⇒
Let, cos x = k
∴ 2k2 - √3 k – 3 = 0
⇒ 2k2 -2√3 k + √3 k – 3 = 0
⇒ 2k(k – √3) +√3(k – √3) = 0
⇒ (2k + √3)(k - √3) = 0
∴ k = √3 or k = -√3/2
⇒ cos x = √3 or cos x = -√3/2
As cos x lies between -1 and 1
∴ cos x can’t be √3
So we ignore that value.
∴ cos x = -√3/2
⇒ cos x = cos 150° = cos 5π/6
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
On comparing our equation with standard form, we have
y = 5π/6
∴ where nϵZ ..ans
Solve the following equations :
4 sin2 x – 8 cos x + 1 = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
4sin2 x -8 cos x + 1 = 0
As the equation is of 2nd degree, so we need to solve a quadratic equation.
First we will substitute trigonometric ratio with some variable k and we will solve for k
As, sin2 x = 1 – cos2 x
∴ we have,
⇒
⇒
Let, cos x = k
∴ 4k2 + 8k – 5 = 0
⇒ 4k2 -2k + 10k – 5 = 0
⇒ 2k(2k – 1) +5(2k – 1) = 0
⇒ (2k + 5)(2k - 1) = 0
∴ k = -5/2 = -2.5 or k = 1/2
⇒ cos x = -2.5 or cos x = 1/2
As cos x lies between -1 and 1
∴ cos x can’t be -2.5
So we ignore that value.
∴ cos x = 1/2
⇒ cos x = cos 60° = cos π/3
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
On comparing our equation with standard form, we have
y = π/3
∴ where nϵZ ..ans
Solve the following equations :
4 sin2 x – 8 cos x + 1 = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
4sin2 x -8 cos x + 1 = 0
As the equation is of 2nd degree, so we need to solve a quadratic equation.
First we will substitute trigonometric ratio with some variable k and we will solve for k
As, sin2 x = 1 – cos2 x
∴ we have,
⇒
⇒
Let, cos x = k
∴ 4k2 + 8k – 5 = 0
⇒ 4k2 -2k + 10k – 5 = 0
⇒ 2k(2k – 1) +5(2k – 1) = 0
⇒ (2k + 5)(2k - 1) = 0
∴ k = -5/2 = -2.5 or k = 1/2
⇒ cos x = -2.5 or cos x = 1/2
As cos x lies between -1 and 1
∴ cos x can’t be -2.5
So we ignore that value.
∴ cos x = 1/2
⇒ cos x = cos 60° = cos π/3
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
On comparing our equation with standard form, we have
y = π/3
∴ where nϵZ ..ans
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
⇒
⇒
∴ tan x = -1 or tan x = √3
As, tan x ϵ (-∞ , ∞) so both values are valid and acceptable.
⇒ tan x = tan (-π/4) or tan x = tan (π/3)
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
Clearly by comparing standard form with obtained equation we have
y = -π/4 or y = π/3
∴ or
Hence,
,where m,nϵZ
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
⇒
⇒
∴ tan x = -1 or tan x = √3
As, tan x ϵ (-∞ , ∞) so both values are valid and acceptable.
⇒ tan x = tan (-π/4) or tan x = tan (π/3)
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
Clearly by comparing standard form with obtained equation we have
y = -π/4 or y = π/3
∴ or
Hence,
,where m,nϵZ
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
⇒
⇒
⇒
∴ either, or
⇒ or
⇒ or
⇒ or
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
Clearly by comparing standard form with obtained equation we have:
y = π/6 or y = -π/3
∴ or
Hence,
,where m,nϵZ
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
⇒
⇒
⇒
∴ either, or
⇒ or
⇒ or
⇒ or
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
Clearly by comparing standard form with obtained equation we have:
y = π/6 or y = -π/3
∴ or
Hence,
,where m,nϵZ
Solve the following equations :
cos 4x = cos 2x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
y = 2x
∴ 4
Hence,
or
∴ or
⇒ x = nπ or
∴where m, nϵZ ..ans
Solve the following equations :
cos 4x = cos 2x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
y = 2x
∴ 4
Hence,
or
∴ or
⇒ x = nπ or
∴where m, nϵZ ..ans
Solve the following equations :
cos x + cos 2x + cos 3x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
cos x + cos 2x + cos 3x = 0
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, cos x + cos 2x + cos 3x = 0
∴ we will use cos x and cos 2x for transformation as after transformation it will give cos 2x term which can be taken common.
∴ cos x + cos 2x + cos 3x = 0
⇒ cos 2x + (cos x + cos 3x) = 0
{∵ cos A + cos B = 2
⇒ cos 2x + 2 cos
⇒ cos 2x + 2cos 2x cos x = 0
⇒ cos 2x ( 1 + 2 cos x) = 0
∴ cos 2x = 0 or 1 + 2cos x = 0
⇒ cos 2x = cos π/2 or cos x = -1/2
⇒ cos 2x = cos π/2 or cos x = cos (π - π/3) = cos (2π /3)
If cos x = cos y implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
y = π/2 or y = 2π/3
∴ 2x = 2nπ ± π/2 or x = 2mπ ± 2π/3
∴ where m, nϵZ
Solve the following equations :
cos x + cos 2x + cos 3x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
cos x + cos 2x + cos 3x = 0
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, cos x + cos 2x + cos 3x = 0
∴ we will use cos x and cos 2x for transformation as after transformation it will give cos 2x term which can be taken common.
∴ cos x + cos 2x + cos 3x = 0
⇒ cos 2x + (cos x + cos 3x) = 0
{∵ cos A + cos B = 2
⇒ cos 2x + 2 cos
⇒ cos 2x + 2cos 2x cos x = 0
⇒ cos 2x ( 1 + 2 cos x) = 0
∴ cos 2x = 0 or 1 + 2cos x = 0
⇒ cos 2x = cos π/2 or cos x = -1/2
⇒ cos 2x = cos π/2 or cos x = cos (π - π/3) = cos (2π /3)
If cos x = cos y implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
y = π/2 or y = 2π/3
∴ 2x = 2nπ ± π/2 or x = 2mπ ± 2π/3
∴ where m, nϵZ
Solve the following equations :
cos x + cos 3x – cos 2x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
cos x - cos 2x + cos 3x = 0
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, cos x - cos 2x + cos 3x = 0
∴ we will use cos x and cos 2x for transformation as after transformation it will give cos 2x term which can be taken common.
∴ cos x - cos 2x + cos 3x = 0
⇒ -cos 2x + (cos x + cos 3x) = 0
{∵ cos A + cos B = 2
⇒ -cos 2x + 2 cos
⇒ -cos 2x + 2cos 2x cos x = 0
⇒ cos 2x ( -1 + 2 cos x) = 0
∴ cos 2x = 0 or 1 + 2cos x = 0
⇒ cos 2x = cos π/2 or cos x = 1/2
⇒ cos 2x = cos π/2 or cos x = cos (π/3) = cos (π /3)
If cos x = cos y implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
y = π/2 or y = π/3
∴ 2x = 2nπ ± π/2 or x = 2mπ ± π/3
∴where m, nϵZ
Solve the following equations :
cos x + cos 3x – cos 2x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
cos x - cos 2x + cos 3x = 0
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, cos x - cos 2x + cos 3x = 0
∴ we will use cos x and cos 2x for transformation as after transformation it will give cos 2x term which can be taken common.
∴ cos x - cos 2x + cos 3x = 0
⇒ -cos 2x + (cos x + cos 3x) = 0
{∵ cos A + cos B = 2
⇒ -cos 2x + 2 cos
⇒ -cos 2x + 2cos 2x cos x = 0
⇒ cos 2x ( -1 + 2 cos x) = 0
∴ cos 2x = 0 or 1 + 2cos x = 0
⇒ cos 2x = cos π/2 or cos x = 1/2
⇒ cos 2x = cos π/2 or cos x = cos (π/3) = cos (π /3)
If cos x = cos y implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
y = π/2 or y = π/3
∴ 2x = 2nπ ± π/2 or x = 2mπ ± π/3
∴where m, nϵZ
Solve the following equations :
sin x + sin 5x = sin 3x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin x + sin 5x = sin 3x
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, sin x + sin 5x = sin 3x
∴ sin x + sin 5x – sin 3x = 0
∴ we will use sin x and sin 5x for transformation as after transformation it will give sin 3x term which can be taken common.
{∵ sin A + sin B =
⇒ -sin 3x + 2 sin
⇒ 2sin 3x cos 2x – sin 3x = 0
⇒ sin 3x ( 2cos 2x – 1) = 0
∴ either, sin 3x = 0 or 2cos 2x – 1 = 0
⇒ sin 3x = sin 0 or cos 2x = � = cos π/3
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
Comparing obtained equation with standard equation, we have:
3x = nπ or 2x = 2mπ ± π/3
∴ where m,nϵZ ..ans
Solve the following equations :
sin x + sin 5x = sin 3x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin x + sin 5x = sin 3x
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, sin x + sin 5x = sin 3x
∴ sin x + sin 5x – sin 3x = 0
∴ we will use sin x and sin 5x for transformation as after transformation it will give sin 3x term which can be taken common.
{∵ sin A + sin B =
⇒ -sin 3x + 2 sin
⇒ 2sin 3x cos 2x – sin 3x = 0
⇒ sin 3x ( 2cos 2x – 1) = 0
∴ either, sin 3x = 0 or 2cos 2x – 1 = 0
⇒ sin 3x = sin 0 or cos 2x = � = cos π/3
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
Comparing obtained equation with standard equation, we have:
3x = nπ or 2x = 2mπ ± π/3
∴ where m,nϵZ ..ans
Solve the following equations :
cos x cos 2x cos 3x = �
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
cos x cos 2x cos 3x = �
⇒ 4cos x cos 2x cos 3x – 1 = 0
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
∴ 2(2cos x cos 3x)cos 2x – 1 = 0
⇒ 2(cos 4x + cos 2x)cos2x – 1 = 0
⇒ 2(2cos2 2x – 1 + cos 2x)cos 2x – 1 = 0 {using cos 2θ = 2cos2θ – 1 }
⇒ 4cos3 2x – 2cos 2x + 2cos2 2x – 1 = 0
⇒ 2cos2 2x (2cos 2x + 1) -1(2cos 2x + 1) = 0
⇒ (2cos2 2x – 1)(2 cos 2x + 1) = 0
∴ either, 2cos 2x + 1 = 0 or (2cos2 2x – 1) = 0
⇒ cos 2x = -1/2 or cos 4x = 0 {using cos 2θ = 2cos2θ – 1}
⇒ cos 2x = cos (π - π/3) = cos 2π /3 or cos 4x = cos π/2
If cos x = cos y implies x = 2nπ ± y, where n ∈ Z.
In case of cos x = 0 we can give solution directly as cos x = 0 is true for x = odd multiple of π/2
Comparing obtained equation with standard equation, we have:
y = 2π / 3 or y = π/2
∴ 2x = 2mπ ± 2π/3 or 4x = (2n+1)π/2
∴where m,nϵZ ….ans
Solve the following equations :
cos x cos 2x cos 3x = �
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
cos x cos 2x cos 3x = �
⇒ 4cos x cos 2x cos 3x – 1 = 0
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
∴ 2(2cos x cos 3x)cos 2x – 1 = 0
⇒ 2(cos 4x + cos 2x)cos2x – 1 = 0
⇒ 2(2cos2 2x – 1 + cos 2x)cos 2x – 1 = 0 {using cos 2θ = 2cos2θ – 1 }
⇒ 4cos3 2x – 2cos 2x + 2cos2 2x – 1 = 0
⇒ 2cos2 2x (2cos 2x + 1) -1(2cos 2x + 1) = 0
⇒ (2cos2 2x – 1)(2 cos 2x + 1) = 0
∴ either, 2cos 2x + 1 = 0 or (2cos2 2x – 1) = 0
⇒ cos 2x = -1/2 or cos 4x = 0 {using cos 2θ = 2cos2θ – 1}
⇒ cos 2x = cos (π - π/3) = cos 2π /3 or cos 4x = cos π/2
If cos x = cos y implies x = 2nπ ± y, where n ∈ Z.
In case of cos x = 0 we can give solution directly as cos x = 0 is true for x = odd multiple of π/2
Comparing obtained equation with standard equation, we have:
y = 2π / 3 or y = π/2
∴ 2x = 2mπ ± 2π/3 or 4x = (2n+1)π/2
∴where m,nϵZ ….ans
Solve the following equations :
cos x + sin x = cos 2x + sin 2x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
cos x + sin x = cos 2x + sin 2x
cos x – cos 2x = sin 2x – sin x
{∵ sin A - sin B =
∴
⇒
∴
Hence,
Either,
⇒
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴
⇒ where m,n ϵ Z ….ans
Solve the following equations :
cos x + sin x = cos 2x + sin 2x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
cos x + sin x = cos 2x + sin 2x
cos x – cos 2x = sin 2x – sin x
{∵ sin A - sin B =
∴
⇒
∴
Hence,
Either,
⇒
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴
⇒ where m,n ϵ Z ….ans
Solve the following equations :
sin x + sin 2x + sin 3x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin x + sin 2x + sin 3x = 0
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, sin x + sin 2x + sin 3x = 0
∴ we will use sin x and sin 3x for transformation as after transformation it will give sin 2x term which can be taken common.
{∵ sin A + sin B =
⇒ sin 2x + 2 sin
⇒ 2sin 2x cos x + sin 2x = 0
⇒ sin 2x ( 2cos x + 1) = 0
∴ either, sin 2x = 0 or 2cos x + 1 = 0
⇒ sin 2x = sin 0 or cos x = - � = cos (π-π/3) = cos 2π/3
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
Comparing obtained equation with standard equation, we have:
2x = nπ or x = 2mπ ± 2π/3
∴ where m,nϵZ ..ans
Solve the following equations :
sin x + sin 2x + sin 3x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin x + sin 2x + sin 3x = 0
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, sin x + sin 2x + sin 3x = 0
∴ we will use sin x and sin 3x for transformation as after transformation it will give sin 2x term which can be taken common.
{∵ sin A + sin B =
⇒ sin 2x + 2 sin
⇒ 2sin 2x cos x + sin 2x = 0
⇒ sin 2x ( 2cos x + 1) = 0
∴ either, sin 2x = 0 or 2cos x + 1 = 0
⇒ sin 2x = sin 0 or cos x = - � = cos (π-π/3) = cos 2π/3
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
Comparing obtained equation with standard equation, we have:
2x = nπ or x = 2mπ ± 2π/3
∴ where m,nϵZ ..ans
Solve the following equations :
sin x + sin 2x + sin 3x + sin 4x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin x + sin 2x + sin 3x + sin 4x = 0
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, sin x + sin 2x + sin 3x + sin 4x= 0
∴ we will use sin x and sin 3x together in 1 group for transformation and sin 4x and sin 2x common in other group as after transformation both will give cos x term which can be taken common.
{∵ sin A + sin B =
(sin x + sin 3x )+( sin 2x + sin 4x) = 0
⇒ 2 sin + 2 sin
⇒ 2sin 2x cos x + 2sin 3x cos x= 0
⇒ 2cos x (sin 2x + sin 3x) = 0
Again using transformation formula, we have:
⇒ 2 cos x 2
⇒
∴ either, cos x = 0 or or
In case of cos x = 0 we can give solution directly as cos x = 0 is true for x = odd multiple of π/2
In case of sin x = 0 we can give solution directly as sin x = 0 is true for x = integral multiple of π
∴
⇒ where n,p,mϵZ
Solve the following equations :
sin x + sin 2x + sin 3x + sin 4x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin x + sin 2x + sin 3x + sin 4x = 0
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, sin x + sin 2x + sin 3x + sin 4x= 0
∴ we will use sin x and sin 3x together in 1 group for transformation and sin 4x and sin 2x common in other group as after transformation both will give cos x term which can be taken common.
{∵ sin A + sin B =
(sin x + sin 3x )+( sin 2x + sin 4x) = 0
⇒ 2 sin + 2 sin
⇒ 2sin 2x cos x + 2sin 3x cos x= 0
⇒ 2cos x (sin 2x + sin 3x) = 0
Again using transformation formula, we have:
⇒ 2 cos x 2
⇒
∴ either, cos x = 0 or or
In case of cos x = 0 we can give solution directly as cos x = 0 is true for x = odd multiple of π/2
In case of sin x = 0 we can give solution directly as sin x = 0 is true for x = integral multiple of π
∴
⇒ where n,p,mϵZ
Solve the following equations :
sin 3x – sin x = 4 cos2 x – 2
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin 3x – sin x = 4 cos2 x – 2
⇒ sin 3x – sin x = 2(2 cos2 x – 1)
⇒ sin 3x – sin x = 2 cos 2x {∵ cos 2θ = 2cos2 θ – 1}
{∵ sin A - sin B =
⇒
⇒
⇒
∴ either, cos 2x = 0 or sin x = 1 = sin π/2
In case of cos x = 0 we can give solution directly as cos x = 0 is true for x = odd multiple of π/2
If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
∴
⇒ where m, nϵZ
Solve the following equations :
sin 3x – sin x = 4 cos2 x – 2
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin 3x – sin x = 4 cos2 x – 2
⇒ sin 3x – sin x = 2(2 cos2 x – 1)
⇒ sin 3x – sin x = 2 cos 2x {∵ cos 2θ = 2cos2 θ – 1}
{∵ sin A - sin B =
⇒
⇒
⇒
∴ either, cos 2x = 0 or sin x = 1 = sin π/2
In case of cos x = 0 we can give solution directly as cos x = 0 is true for x = odd multiple of π/2
If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
∴
⇒ where m, nϵZ
Solve the following equations :
sin 2x – sin 4x + sin 6x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin 2x - sin 4x + sin 6x = 0
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
we have, sin 2x - sin 4x + sin 6x = 0
∴ we will use sin 6x and sin 2x for transformation as after transformation it will give sin 4x term which can be taken common.
{∵ sin A + sin B =
⇒ -sin 4x + 2 sin
⇒ 2sin 4x cos 2x – sin 4x = 0
⇒ sin 4x ( 2cos 2x – 1) = 0
∴ either, sin 4x = 0 or 2cos 2x – 1 = 0
⇒ sin 4x = sin 0 or cos 2x = � = cos π/3
If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
Comparing obtained equation with standard equation, we have:
4x = nπ or 2x = 2mπ ± π/3
∴ where m,nϵZ ..ans
Solve the following equations :
sin 2x – sin 4x + sin 6x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin 2x - sin 4x + sin 6x = 0
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
we have, sin 2x - sin 4x + sin 6x = 0
∴ we will use sin 6x and sin 2x for transformation as after transformation it will give sin 4x term which can be taken common.
{∵ sin A + sin B =
⇒ -sin 4x + 2 sin
⇒ 2sin 4x cos 2x – sin 4x = 0
⇒ sin 4x ( 2cos 2x – 1) = 0
∴ either, sin 4x = 0 or 2cos 2x – 1 = 0
⇒ sin 4x = sin 0 or cos 2x = � = cos π/3
If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
Comparing obtained equation with standard equation, we have:
4x = nπ or 2x = 2mπ ± π/3
∴ where m,nϵZ ..ans
Solve the following equations :
tan x + tan 2x + tan 3x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
tan x + tan 2x + tan 3x = 0
In order to solve the equation we need to reduce the equation into factor form so that we can equate the ratios with 0 and can solve the equation easily
As if we expand tan 3x = tan ( x + 2x) we will get tan x + tan 2x common.
∴ tan x + tan 2x + tan 3x = 0
⇒ tan x + tan 2x + tan (x + 2x) = 0
As, tan (A + B) =
∴ tan x + tan 2x +
⇒
⇒
∴ tan x + tan 2x = 0 or 2 – tan x tan 2x = 0
Using, tan 2x = we have,
⇒ tan x = tan (-2x) or 2 –
⇒ tan x = tan(-2x) or 2 – 4tan2 x = 0 ⇒ tan x = 1/ √2
Let 1/√2 = tan α and if tan x = tan y, implies x = nπ + y, where n ∈ Z
∴ x = nπ + (-2x) or tan x = tan α ⇒ x = mπ + α
⇒ 3x = nπ or x = mπ + α
∴
Solve the following equations :
tan x + tan 2x + tan 3x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
tan x + tan 2x + tan 3x = 0
In order to solve the equation we need to reduce the equation into factor form so that we can equate the ratios with 0 and can solve the equation easily
As if we expand tan 3x = tan ( x + 2x) we will get tan x + tan 2x common.
∴ tan x + tan 2x + tan 3x = 0
⇒ tan x + tan 2x + tan (x + 2x) = 0
As, tan (A + B) =
∴ tan x + tan 2x +
⇒
⇒
∴ tan x + tan 2x = 0 or 2 – tan x tan 2x = 0
Using, tan 2x = we have,
⇒ tan x = tan (-2x) or 2 –
⇒ tan x = tan(-2x) or 2 – 4tan2 x = 0 ⇒ tan x = 1/ √2
Let 1/√2 = tan α and if tan x = tan y, implies x = nπ + y, where n ∈ Z
∴ x = nπ + (-2x) or tan x = tan α ⇒ x = mπ + α
⇒ 3x = nπ or x = mπ + α
∴
Solve the following equations :
tan x + tan 2x = tan 3x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
tan x + tan 2x - tan 3x = 0
In order to solve the equation we need to reduce the equation into factor form so that we can equate the ratios with 0 and can solve the equation easily
As if we expand tan 3x = tan ( x + 2x) we will get tan x + tan 2x common.
∴ tan x + tan 2x - tan 3x = 0
⇒ tan x + tan 2x - tan (x + 2x) = 0
As, tan (A + B) =
∴ tan x + tan 2x -
⇒
⇒
∴ tan x + tan 2x = 0 or – tan x tan 2x = 0
Using, tan 2x = we have,
⇒ tan x = tan (-2x) or
⇒ tan x = tan(-2x) or tan x = 0 = tan 0
if tan x = tan y, implies x = nπ + y, where n ∈ Z
∴ x = nπ + (-2x) or x = mπ + 0
⇒ 3x = nπ or x = mπ
∴ ….ans
Solve the following equations :
tan x + tan 2x = tan 3x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
tan x + tan 2x - tan 3x = 0
In order to solve the equation we need to reduce the equation into factor form so that we can equate the ratios with 0 and can solve the equation easily
As if we expand tan 3x = tan ( x + 2x) we will get tan x + tan 2x common.
∴ tan x + tan 2x - tan 3x = 0
⇒ tan x + tan 2x - tan (x + 2x) = 0
As, tan (A + B) =
∴ tan x + tan 2x -
⇒
⇒
∴ tan x + tan 2x = 0 or – tan x tan 2x = 0
Using, tan 2x = we have,
⇒ tan x = tan (-2x) or
⇒ tan x = tan(-2x) or tan x = 0 = tan 0
if tan x = tan y, implies x = nπ + y, where n ∈ Z
∴ x = nπ + (-2x) or x = mπ + 0
⇒ 3x = nπ or x = mπ
∴ ….ans
Solve the following equations :
tan 3x + tan x = 2 tan 2x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
tan x + tan 3x = 2tan 2x
⇒ tan x + tan 3x = tan 2x + tan 2x
⇒ tan 3x – tan 2x = tan 2x – tan x
⇒
As, tan (A - B) =
∴
⇒
⇒
∴ tan x = 0 or tan 2x = 0 or tan 3x = tan x
if tan x = tan y, implies x = nπ + y, where n ∈ Z
∴ x = nπ or 2x = mπ or 3x = kπ + x
∴
∴
Solve the following equations :
tan 3x + tan x = 2 tan 2x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
tan x + tan 3x = 2tan 2x
⇒ tan x + tan 3x = tan 2x + tan 2x
⇒ tan 3x – tan 2x = tan 2x – tan x
⇒
As, tan (A - B) =
∴
⇒
⇒
∴ tan x = 0 or tan 2x = 0 or tan 3x = tan x
if tan x = tan y, implies x = nπ + y, where n ∈ Z
∴ x = nπ or 2x = mπ or 3x = kπ + x
∴
∴
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴
⇒ { ∵ }
⇒ { ∵ sin A cos B + cos A sin B = sin (A +B)}
⇒
NOTE: We can also make the ratio of cos instead of sin, the answer remains same but the form of answer may look different, when you put values of n you will get same values with both forms
If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z
∴
∴
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴
⇒ { ∵ }
⇒ { ∵ sin A cos B + cos A sin B = sin (A +B)}
⇒
NOTE: We can also make the ratio of cos instead of sin, the answer remains same but the form of answer may look different, when you put values of n you will get same values with both forms
If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z
∴
∴
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴
⇒ { ∵ }
⇒ { ∵ cos A cos B + sin A sin B = cos (A - B)}
⇒
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z
∴
∴
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴
⇒ { ∵ }
⇒ { ∵ cos A cos B + sin A sin B = cos (A - B)}
⇒
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z
∴
∴
Solve the following equations :
sin x + cos x = 1
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
.
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴ { dividing by √2 both sides}
⇒ { ∵ }
⇒ { ∵ cos A cos B + sin A sin B = cos (A - B)}
NOTE: We can also make the ratio of sin instead of cos , the answer remains same but the form of answer may look different, when you put values of n you will get same values with both forms
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z
∴ s
∴ .
.
Solve the following equations :
sin x + cos x = 1
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
.
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴ { dividing by √2 both sides}
⇒ { ∵ }
⇒ { ∵ cos A cos B + sin A sin B = cos (A - B)}
NOTE: We can also make the ratio of sin instead of cos , the answer remains same but the form of answer may look different, when you put values of n you will get same values with both forms
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z
∴ s
∴ .
.
Solve the following equations :
cosec x = 1 + cot x
deas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
cosec x = 1 + cot x
⇒
⇒ .
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴ s { dividing by √2 both sides}
⇒ . { ∵ . }
⇒ . { ∵ cos A cos B + sin A sin B = cos (A - B)}
NE: We can also make the ratio of sin instead of cos , the answer remains same but the form of answer may look different, when you put values of n you will get same values with both forms
If cos x = cos y, impls x = 2nπ ± y, where n ∈ Z
∴ .
∴
Solve the following equations :
cosec x = 1 + cot x
deas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
cosec x = 1 + cot x
⇒
⇒ .
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴ s { dividing by √2 both sides}
⇒ . { ∵ . }
⇒ . { ∵ cos A cos B + sin A sin B = cos (A - B)}
NE: We can also make the ratio of sin instead of cos , the answer remains same but the form of answer may look different, when you put values of n you will get same values with both forms
If cos x = cos y, impls x = 2nπ ± y, where n ∈ Z
∴ .
∴
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
Dividing both sides by 2√2 :
We have,
.
⇒ where cos α = π /4
⇒ { cos π/4 = 1/√2 }
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z
∴
Solve the following equations :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
Dividing both sides by 2√2 :
We have,
.
⇒ where cos α = π /4
⇒ { cos π/4 = 1/√2 }
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z
∴
Solve the following equations :
cot x + tan x = 2
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
cot x + tan x = 2
⇒
⇒ ( tan x – 1 )2 = 0
∴ tan x = 1 ⇒ tan x = tan π/4
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴x = nπ + π/4 where nϵZ ….ans
Solve the following equations :
cot x + tan x = 2
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
cot x + tan x = 2
⇒
⇒ ( tan x – 1 )2 = 0
∴ tan x = 1 ⇒ tan x = tan π/4
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴x = nπ + π/4 where nϵZ ….ans
Solve the following equations :
2 sin2 x = 3 cos x, 0 ≤ x ≤ 2π
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
2 sin2 x = 3 cos x , 0 ≤ x ≤ 2π
⇒ 2 ( 1 – cos2 x) = 3 cos x
⇒ 2 cos2 x + 3cos x – 2 = 0
⇒ 2 cos2 x + 4 cos x – cos x – 2 = 0
⇒ 2 cos x(cos x + 2) – 1(cos x + 2) = 0
⇒ (2cos x – 1)(cos x + 2) = 0
∴ cos x = �
or cos x = -2 { as cos x lies between -1 and 1 so this value is rejected }
∴ cos x = � = cos π/3
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z
∴ x = 2nπ ± π/3
But, 0 ≤ x ≤ 2π
∴ x = π/3 and x = 2π - π/3 = 5π/3 ….ans
Solve the following equations :
2 sin2 x = 3 cos x, 0 ≤ x ≤ 2π
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
2 sin2 x = 3 cos x , 0 ≤ x ≤ 2π
⇒ 2 ( 1 – cos2 x) = 3 cos x
⇒ 2 cos2 x + 3cos x – 2 = 0
⇒ 2 cos2 x + 4 cos x – cos x – 2 = 0
⇒ 2 cos x(cos x + 2) – 1(cos x + 2) = 0
⇒ (2cos x – 1)(cos x + 2) = 0
∴ cos x = �
or cos x = -2 { as cos x lies between -1 and 1 so this value is rejected }
∴ cos x = � = cos π/3
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z
∴ x = 2nπ ± π/3
But, 0 ≤ x ≤ 2π
∴ x = π/3 and x = 2π - π/3 = 5π/3 ….ans
Solve the following equations :
sec x cos 5x + 1 = 0, 0 < x < π/2
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
sec x cos 5x + 1 = 0, 0 < x < π/2
⇒ sec x cos 5x = -1
⇒ cos 5x = - cos x
∵ - cos x = cos (π – x)
∴ cos 5x = cos (π – x)
If cos x = cos y, implies 2nπ ± y, where n ∈ Z.
∴ 5x = 2nπ ± (π – x)
⇒ 5x = 2nπ + (π – x) or 5x = 2nπ – (π – x)
⇒ 6x = (2n+1)π or 4x = (2n-1)π
∴
But, 0 < x < π/2
∴
Solve the following equations :
sec x cos 5x + 1 = 0, 0 < x < π/2
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
sec x cos 5x + 1 = 0, 0 < x < π/2
⇒ sec x cos 5x = -1
⇒ cos 5x = - cos x
∵ - cos x = cos (π – x)
∴ cos 5x = cos (π – x)
If cos x = cos y, implies 2nπ ± y, where n ∈ Z.
∴ 5x = 2nπ ± (π – x)
⇒ 5x = 2nπ + (π – x) or 5x = 2nπ – (π – x)
⇒ 6x = (2n+1)π or 4x = (2n-1)π
∴
But, 0 < x < π/2
∴
Solve the following equations :
5 cos2 x + 7 sin2 x – 6 = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
5 cos2 x + 7 sin2 x – 6 = 0
⇒ 5 cos2 x + 5 sin2 x + 2sin2 x – 6 = 0
⇒ 2 sin2 x – 6 + 5 = 0 {∵ sin2 x + cos2 x = 1}
⇒ 2 sin2 x – 1 = 0
⇒ sin2 x = (1/2)
∴ sin x = ±(1 /√2)
⇒ sin x = ± sin π /4
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
∴ x = nπ + (-1)n (±(π / 4)) where n ϵ Z
∴….ans
Solve the following equations :
5 cos2 x + 7 sin2 x – 6 = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
5 cos2 x + 7 sin2 x – 6 = 0
⇒ 5 cos2 x + 5 sin2 x + 2sin2 x – 6 = 0
⇒ 2 sin2 x – 6 + 5 = 0 {∵ sin2 x + cos2 x = 1}
⇒ 2 sin2 x – 1 = 0
⇒ sin2 x = (1/2)
∴ sin x = ±(1 /√2)
⇒ sin x = ± sin π /4
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
∴ x = nπ + (-1)n (±(π / 4)) where n ϵ Z
∴….ans
Solve the following equations :
sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x
⇒ (sin x + sin 3x) – 3sin 2x – (cos x + cos 3x) + 3 cox 2x = 0
∵ sin A + sin B =
∴
⇒ 2 sin 2x cos x – 3 sin 2x – 2 cos 2x cos x + 3 cos 2x = 0
⇒ sin 2x ( 2cos x – 3) - cos 2x (2cos x – 3) = 0
⇒ (2cos x – 3)(sin 2x – cos 2x) = 0
∴ cos x = 3/2 = 1.5 (not accepted as cos x lies between – 1 and 1)
Or sin 2x = cos 2x
∴ tan 2x = 1 = tan π/4
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴ 2x = nπ + π/4
∴
Solve the following equations :
sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x
⇒ (sin x + sin 3x) – 3sin 2x – (cos x + cos 3x) + 3 cox 2x = 0
∵ sin A + sin B =
∴
⇒ 2 sin 2x cos x – 3 sin 2x – 2 cos 2x cos x + 3 cos 2x = 0
⇒ sin 2x ( 2cos x – 3) - cos 2x (2cos x – 3) = 0
⇒ (2cos x – 3)(sin 2x – cos 2x) = 0
∴ cos x = 3/2 = 1.5 (not accepted as cos x lies between – 1 and 1)
Or sin 2x = cos 2x
∴ tan 2x = 1 = tan π/4
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴ 2x = nπ + π/4
∴
Solve the following equations :
4 sin x cos x + 2 sin x + 2 cos x + 1 = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
4 sin x cos x + 2 sin x + 2 cos x + 1 = 0
⇒ 2sin x (2cos x + 1) + 1(2cos x + 1) = 0
⇒ (2cos x + 1)(2sin x + 1) = 0
∴ cos x = -1/2 or sin x = -1/2
⇒ cos x = cos (π - π/3) or sin x = sin (- π/6)
⇒ cos x = cos 2π/3 or sin x = sin (-π/6)
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
And cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
∴ x = 2nπ ± 2π/3 or x = mπ + (-1)m (-π/6)
Hence,
Solve the following equations :
4 sin x cos x + 2 sin x + 2 cos x + 1 = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
4 sin x cos x + 2 sin x + 2 cos x + 1 = 0
⇒ 2sin x (2cos x + 1) + 1(2cos x + 1) = 0
⇒ (2cos x + 1)(2sin x + 1) = 0
∴ cos x = -1/2 or sin x = -1/2
⇒ cos x = cos (π - π/3) or sin x = sin (- π/6)
⇒ cos x = cos 2π/3 or sin x = sin (-π/6)
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
And cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
∴ x = 2nπ ± 2π/3 or x = mπ + (-1)m (-π/6)
Hence,
Solve the following equations :
cos x + sin x = cos 2x + sin 2x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
cos x + sin x = cos 2x + sin 2x
cos x – cos 2x = sin 2x – sin x
{∵ sin A - sin B =
∴
⇒ .
∴ .
Hence,
Either,
⇒
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴
⇒ where m,n ϵ Z ….ans
Solve the following equations :
cos x + sin x = cos 2x + sin 2x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
cos x + sin x = cos 2x + sin 2x
cos x – cos 2x = sin 2x – sin x
{∵ sin A - sin B =
∴
⇒ .
∴ .
Hence,
Either,
⇒
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴
⇒ where m,n ϵ Z ….ans
Solve the following equations :
sin x tan x – 1 = tan x – sin x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
sin x tan x – 1 = tan x – sin x
⇒ sin x tan x – tan x + sin x – 1 = 0
⇒ tan x(sin x – 1) + (sin x – 1) = 0
⇒ (sin x – 1)(tan x + 1) = 0
∴ sin x = 1 or tan x = -1
⇒ sin x = sin π/2 or tan x = tan (- π/4 )
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
and tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴ x = nπ + (-1)n (π /2) or x = mπ + (- π/4)
∴
Solve the following equations :
sin x tan x – 1 = tan x – sin x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
sin x tan x – 1 = tan x – sin x
⇒ sin x tan x – tan x + sin x – 1 = 0
⇒ tan x(sin x – 1) + (sin x – 1) = 0
⇒ (sin x – 1)(tan x + 1) = 0
∴ sin x = 1 or tan x = -1
⇒ sin x = sin π/2 or tan x = tan (- π/4 )
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
and tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴ x = nπ + (-1)n (π /2) or x = mπ + (- π/4)
∴
Solve the following equations :
3 tan x + cot x = 5 cosec x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
3tan x + cot x = 5cosec x
⇒
⇒
⇒
⇒
⇒ {∵ sin2 x + cos2 x = 1}
∴
⇒ = 0
⇒
⇒
⇒
∴ cos x = -3 (neglected as cos x lies between -1 and 1)
or cos x = � (accepted value)
∴
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
∴
Solve the following equations :
3 tan x + cot x = 5 cosec x
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
3tan x + cot x = 5cosec x
⇒
⇒
⇒
⇒
⇒ {∵ sin2 x + cos2 x = 1}
∴
⇒ = 0
⇒
⇒
⇒
∴ cos x = -3 (neglected as cos x lies between -1 and 1)
or cos x = � (accepted value)
∴
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
∴
Solve : 3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
As, cos 2x = 1 – 2sin2 x and sin 2x = 2sin x cos x
∴ 3 – 2cos x – 4sin x – (1 – 2sin2 x) + 2sin x cos x = 0
⇒ 2sin2 x – 4sin x + 2 – 2cos x + 2sin x cos x = 0
⇒ 2(sin2 x – 2sin x + 1) + 2cos x(sin x – 1) = 0
⇒ 2(sin x – 1)2 + 2cos x(sin x – 1) = 0
⇒ (sin x – 1)(2cos x + 2sin x – 2) = 0
∴ sin x = 1 or sin x + cos x = 1
When, sin x = 1
We have,
sin x = sin π/2
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z
∴
When, sin x + cos x = 1
∴ { dividing by √2 both sides}
⇒ { ∵ }
⇒ { ∵ cos A cos B + sin A sin B = cos (A - B)}
If cos x = cos y, implies x = 2mπ ± y, where m ∈ Z
∴
∴
⇒
Hence,
Solve : 3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
As, cos 2x = 1 – 2sin2 x and sin 2x = 2sin x cos x
∴ 3 – 2cos x – 4sin x – (1 – 2sin2 x) + 2sin x cos x = 0
⇒ 2sin2 x – 4sin x + 2 – 2cos x + 2sin x cos x = 0
⇒ 2(sin2 x – 2sin x + 1) + 2cos x(sin x – 1) = 0
⇒ 2(sin x – 1)2 + 2cos x(sin x – 1) = 0
⇒ (sin x – 1)(2cos x + 2sin x – 2) = 0
∴ sin x = 1 or sin x + cos x = 1
When, sin x = 1
We have,
sin x = sin π/2
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z
∴
When, sin x + cos x = 1
∴ { dividing by √2 both sides}
⇒ { ∵ }
⇒ { ∵ cos A cos B + sin A sin B = cos (A - B)}
If cos x = cos y, implies x = 2mπ ± y, where m ∈ Z
∴
∴
⇒
Hence,
3sin2 x – 5 sin x cos x + 8 cos2 x = 2
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
3sin2 x – 5 sin x cos x + 8 cos2 x = 2
⇒ 3sin2 x + 3 cos2 x – 5sin x cos x + 5 cos2 x = 2
⇒ 3 - 5sin x cos x + 5 cos2 x = 2 {∵ sin2 x + cos 2x = 1 }
⇒ 5cos2 x + 1 = 5sin x cos x
Squaring both sides:
⇒ (5cos2 x + 1)2 = (5sin x cos x)2
⇒ 25cos4 x + 10cos2 x + 1 = 25 sin2 x cos2 x
⇒ 25cos4 x + 10cos2 x + 1 = 25 (1 - cos2 x) cos2 x
⇒ 50cos4 x – 15 cos2 x + 1 = 0
⇒ 50cos4 x – 10 cos2 x – 5cos2 x + 1 = 0
⇒ 10cos2 x ( 5cos2 x – 1) – (5cos2 x – 1) = 0
⇒ (10cos2 x - 1)(5cos2 x – 1) = 0
∴ cos2 x = 1/10 or cos2 x = 1/5
Hence, when cos2 x = 1/10
We have,
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
let cos α = 1/√10
∴ cos (π – α) = -1/√10
∴ x = 2nπ ± α or x = 2nπ ± (π – α)
∴ when,
When cos2 x = 1/5
We have, .
If cos x = cos y, implies x = 2mπ ± y, where n ∈ Z.
let cos β = 1/√5
∴ cos (π – β) = -1/√5
∴ x = 2mπ ± β or x = 2mπ ± (π – β)
∴ when, .
…ans
3sin2 x – 5 sin x cos x + 8 cos2 x = 2
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
3sin2 x – 5 sin x cos x + 8 cos2 x = 2
⇒ 3sin2 x + 3 cos2 x – 5sin x cos x + 5 cos2 x = 2
⇒ 3 - 5sin x cos x + 5 cos2 x = 2 {∵ sin2 x + cos 2x = 1 }
⇒ 5cos2 x + 1 = 5sin x cos x
Squaring both sides:
⇒ (5cos2 x + 1)2 = (5sin x cos x)2
⇒ 25cos4 x + 10cos2 x + 1 = 25 sin2 x cos2 x
⇒ 25cos4 x + 10cos2 x + 1 = 25 (1 - cos2 x) cos2 x
⇒ 50cos4 x – 15 cos2 x + 1 = 0
⇒ 50cos4 x – 10 cos2 x – 5cos2 x + 1 = 0
⇒ 10cos2 x ( 5cos2 x – 1) – (5cos2 x – 1) = 0
⇒ (10cos2 x - 1)(5cos2 x – 1) = 0
∴ cos2 x = 1/10 or cos2 x = 1/5
Hence, when cos2 x = 1/10
We have,
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
let cos α = 1/√10
∴ cos (π – α) = -1/√10
∴ x = 2nπ ± α or x = 2nπ ± (π – α)
∴ when,
When cos2 x = 1/5
We have, .
If cos x = cos y, implies x = 2mπ ± y, where n ∈ Z.
let cos β = 1/√5
∴ cos (π – β) = -1/√5
∴ x = 2mπ ± β or x = 2mπ ± (π – β)
∴ when, .
…ans
Solve :
Given,
⇒ .
On comparing both sides, we have
sin2 x = cos2 x = �
Note: If we want to give solution using above two equations then task will become tedious as sin x can be positive at that time cos will be negative and similar 4-5 cases will arise. So inspite of combining all solutions at the end,we proceed as follows
combining both we can say that,
all the solutions of first 2 equations combined will satisy this single equation
tan2 x = 1
tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴
Solve :
Given,
⇒ .
On comparing both sides, we have
sin2 x = cos2 x = �
Note: If we want to give solution using above two equations then task will become tedious as sin x can be positive at that time cos will be negative and similar 4-5 cases will arise. So inspite of combining all solutions at the end,we proceed as follows
combining both we can say that,
all the solutions of first 2 equations combined will satisy this single equation
tan2 x = 1
tan x = tan y, implies x = nπ + y, where n ∈ Z.
∴
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
sin x + 1 = 2 × (cos x)2
sin x + 1 = 2 × (1 - (sin x)2)
sin x + 1 = 2 – 2(sin x)2
2(sin x)2 + sin x - 1 = 0
Consider a=sin x
So, the equation will be
2a2+a-1=0
From the equation a=0.5 or -1
Which implies
Sin x=0.5 or sin x=(-1)
Therefore x=30° or 270°
But for x=270° our equation will not be defined as cos (270° )=0
So, the solution for x=30°
According to trigonometric equations
If sin x=sin a
Then x=nπ – na
Here sin x=sin30
So, x=nπ + (-1)n × 30
For n=0, x=30 and n=1,x=150° and for n=2,x=390
Hence between 0 to 2π there are only 2 possible solutions.
Write the number of solutions of the equation 4 sin x – 3 cos x = 7.
4sin x – 3cos x = 7
4sin x – 7 = 3cos x
Squaring both sides
16(sin x)2 + 49 – 56sin x = 9(cos x)2
16(sin x)2 + 49 – 56sin x = 9((sin x)2-1)
16(sin x)2-9(sin x)2-56sin x+49+9=0
7(sin x)2-56sin x+58=0
Solving the quadratic equation
Sin x = 6.7774 or 1.2225
But we know that sinθ lies between [-1,1]
So there are no solutions for this given equation
Write the general solution of tan2 2x = 1.
sin22x = cos22x
sin 22x = 1- Sin22x
2 sin 22x = 1
sin 2x=sin45
So
Write the set of values of a for which the equation √3 sin x – cos x = a has no solution.
cos30°sin x – sin30°cos x =a
sin (x-30)=a
As the range of sin function is from [-1,1]
So the value of a can be R-[-1,1]
i.e. a ∈ (-∞, -2) ∪ (2, ∞)
If cos x = k has exactly one solution in [0, 2 π], then write the value(s) of k.
As cos x = cos θ
Then x=2nπ ± θ
And it is said that it has exactly one solution.
So θ=0 and
=nπ
In the given interval taking n=1,x=π {n=0 is not possible as cos 0 = 1 not -1 but cos π is -1}
Write the number of points of intersection of the curves 2y = 1 and y = cos x, 0 ≤ x ≤ 2π.
2y=1
i.e.
and y = cos x
so, to get the intersection points we must equate both the equations
i.e.
so, cos x = cos 60°
and we know if cos x = cos a
then x=2nπ ± a where a ϵ [0, π]
so here
So the possible values which belong [0,2π] are .
There are a total of 2 points of intersection.
Write the values of x in [0, π] for which and cos 2x are in A.P.
a, a+r, a+2r
so A1+A3=2A2
here sin2x + cos2x = 1
2sin x cos x + 1-2sin2x =1
sin x cos x - sin2x=0
sin x (cos x-sin x)=0
if sin x =0
then x =0, π
if sin x=cos x
then x = π/4
So, all possible values are
Write the number of points of intersection of the curves 2y = - 1 and y = cosec x.
Y=cosec x and
So
Sin x = -2
Which is not possible
So
There are 0 points of intersection.
Write the solution set of the equation (2 cos x + 1) (4 cos x + 5) = 0 in the interval (0, 2 π].
8 cos2x+10 cos x+4 cos x+5=0
8 cos2x+14 cos x+5=0
Solving the quadratic equation, we get,
cos x = -0.5
cos x = cos 120°
So
And when n=1
Write the number of values of x in [0, 2 π] that satisfy the equation
1-cos2x-cos x=0.25
cos x 2x+cos x-0.75=0
Solving the quadratic equation we get
cos x = 0.5
cos x = cos60°
x=60° when n=0
And x=300° when n=1
If 3 tan (x - 15o) = tan (x + 15o), 0 ≤ x ≤ 90o, find x.
Let tan (15°) = tan(45°-30°)
We know that
We now
And
So, 3 tan (x - 15o) = tan (x + 15o) can be written as follows
(3 tan x – 3tan15)(1-tan x × tan15) = (1+tan x × tan15)(tan x + tan15)
3 tan x – 3 tan15-3 tan2x tan(15-3) tan x tan215 = tan x + tan15 + tan2x tan15 + tan x tan215
Solving the equation,
And putting
We get tan x - 1 = 0
Therefore, tan x =1
So, x=45°
Or
If 2 sin2 x = 3 cos x, where 0 ≤ x ≤ 2 π, then find the value of x.
2sin2x=3cos x
2-2cos2x=3cos x
Solving the quadratic equation, we get
cos x= 1/2
Therefore x=60° and 300°
i.e.
If sec x cos 5x + 1 = 0, where find the value of x.
cos 5x = -cos x
cos 5x+cos x = 0
We know
Here
Now from the above equation it would be,
2cos 3x cos 2x=0
cos 3x cos 2x=0
cos 3x=0 or cos 2x=0
for cos3x=0
for cos2x=0
so the values of the x less than equal to 90° are
Mark the Correct alternative in the following:
The smallest value of x satisfying the equation √3 (cot x + tan x) = 4 is
A. 2 π /3
B. π /3
C. π /6
D. π /12
√3+√3 tan2x = 4 tan x
√3 tan2x-4 tan x+√3=0
Therefore
Therefore
But here the smallest angle is π /6
Option C
Mark the Correct alternative in the following:
If cos x + √3 sin x = 2, then x =
A. π /3
B. 2 π /3
C. 4 π /3
D. 5 π /3
cos 2x = (2-√3 sin x)2
1-sin2x = 4+3 sin2x-4√3 sin x
4 sin2x-4√3 sin x+3=0
Option A
Mark the Correct alternative in the following:
If tan px – tan qx = 0, then the values of θ form a series in
A. AP
B. GP
C. HP
D. None of these
Tan x=tana
X=nπ+a
So tan px – tan qx = 0
tan px = tan qx
px = nπ + qx
(p-q)x=nπ
Here in this series
So, this is in AP.
Option A
Mark the Correct alternative in the following:
If a is any real number, the number of roots of cot x – tan x = a in the first quadrant is (are).
A. 2
B. 0
C. 1
D. None of these
1-tan2x=a tan x
tan2x+a tan x – 1 = 0
As it is given a be any real number take a=0,
For a=0
Tan x = +1 or -1
In first quadrant only tan(π/4)=1
So, there is only one root that lies in the first quadrant.
Option C
Mark the Correct alternative in the following:
The general solution of the equation 7 cos2 x + 3 sin2 x = 4 is
A.
B.
C.
D. none of these
7cos2x+3(1- cos2x)=4
7 cos2x +3 - 3 cos2x =4
4 cos2x -1=0
cos x = cos60°
Then
Mark the Correct alternative in the following:
A solution of the equation cos2 x + sin x + 1 = 0, lies in the interval
A. (- π/4, π /4)
B. (π /4, 3 π /4)
C. (3 π /4, 5 π /4)
D. (5 π/4, 7 π/4)
1-sin2x+sin x+1=0
sin2x-sin x-2=0
sin x=-1
Option D
Mark the Correct alternative in the following:
The number of solution in [0, π/2] of the equation cos 3x tan 5x = sin 7x is
A. 5
B. 7
C. 6
D. None of these
cos 3x tan 5x = sin 7x
2 cos 3x sin 5x = 2 cos 5x sin 7x
sin 8x + sin2x = sin 12x + sin 2x
sin 8x = sin12x
sin 12x - sin8x = 0
2 sin 2x cos 10x = 0
If sin2x=0
Then, x=0
If cos10x = 0
Then
and x=0 (from above equation sin2x=0)
So, there are 6 possible solutions.
Option C
Mark the Correct alternative in the following:
The general value of x satisfying the equation is given by
A.
B.
C.
D.
Cos2x=(√3-√3sin x)2
1-sin2x = 3+3sin2x-6sin x
4sin2x-6sin x+2=0
2sin2x-3sin x+1=0
sin x = 1 or 0.5
We know,
x = nπ + (-1)nθ
Therefore, the values of x are
So, these values are obtained for different value of n from the equation
So, Option B
Mark the Correct alternative in the following:
The smallest positive angle which satisfies the equation is
A.
B.
C.
D.
2(1-cos2x)+√3cos x +1 = 0
2 - 2 cos2x + √3cos x +1 = 0
2 cos2x - √3cos x -3 = 0
Option A
Mark the Correct alternative in the following:
If 4 sin2 x = 1, then the values of x are
A.
B.
C.
D.
sin x = sin a
Here a= 30° or -30°
X=nπ +(-1)n a
So, the values of x are
Option C
Mark the Correct alternative in the following:
If cot x – tan x = sec x, then x is equal to
A.
B.
C.
D. None of these
1-2sin2x=sin x
2sin2x+sin x-1=0
Sin x = 0.5 or -1
But the equation is invalid for sin x=-1
So, sin x = 0.5 = sin(π/6)
Hence x=
Option B
Mark the Correct alternative in the following:
A value of x satisfying is
A.
B.
C.
D.
cos 60 cos x + sin 60 sin x = 1
cos (60-x)=1
cos (60-x)=cos 0°
x=60°
Option D
Mark the Correct alternative in the following:
In (0, π), the number of solutions of the equation tan x + tan 2x + tan 3x = tan x tan 2x tan 3x is
A. 7
B. 5
C. 4
D. 2
tan x+tan2x+tan3x -tan xtan2xtan3x=0
tan x + tan2x + tan3x (1-tan xtan2x) = 0
tan x + tan2x = -tan3x (1-tan xtan2x)
tan 3x=-tan3x
2 tan3x=0
tan 3x=0
3x=2nπ
For
n=0, x=0
n=1,
so, there are only two possible solutions
Option D
Mark the Correct alternative in the following:
The number of values of x in [0, 2π] that satisfy the equation
A. 1
B. 2
C. 3
D. 4
1-cos2x-cos x-0.25=0
Solving the quadratic equation, we get
Cos x = 0.5
So x= 60° or 300°
Hence there are 2 values
Option B
Mark the Correct alternative in the following:
If esin x – e– sin x – 4 = 0, then x =
A. 0
B. sin-1 {loge(2 – √5)}
C. 1
D. None of these
Loge (esin x-e-sin x) = loge(4)
But the above equation is not true so there are no possible values of x for this given equation
Option D
Mark the Correct alternative in the following:
The equation 3 cos x + 4 sin x = 6 has …. Solution
A. finite
B. infinite
C. one
D. no
4sin x = 6-3cos x
16sin2x = 36+9cos2x-36cos x
16-16 cos2x =36+9cos2x-36cos x
25cos2x-36cos x+20=0
As both the roots are imaginary there exists no value of x satisfying this given equation.
No Solution
Option D
Mark the Correct alternative in the following:
If then general value of θ is
A.
B.
C.
D.
3cos2x=(√2 - sin x)2
3 - 3sin2x=2 +sin2x – 2√2sin x
4 sin2x – 2√2sin x -1 = 0
So, x=15° or 345°
And these values are obtained by the following equation
Option D
Mark the Correct alternative in the following:
General solution of tan 5x = cot 2x is
A.
B.
C.
D.
This implies
But
So
Option C
Mark the Correct alternative in the following:
The solution of the equation cos2 x + sin x + 1 = 0 lies in the interval
A. (- π/4, π/4)
B. (- π/3, π/4)
C. (3π/4, 5π/4)
D. (5π/4, 7π/4)
1-sin2x+sin x+1=0
sin2x-sin x-2=0
sin x = -1
so, x= 3π/2
and it lies between (5π/4, 7π/4)
Option D
Mark the Correct alternative in the following:
If and 0 < x < 2 π, then the solution are
A.
B.
C.
D.
We know if cos x=cos a
Then
x = 2nπ ± a
here
when n=0,
when n=1,
Option B
Mark the Correct alternative in the following:
The number of values of x in the interval [0. 5 π] satisfying the equation 3 sin2 x – 7 sin x + 2 = 0 is
A. 0
B. 5
C. 6
D. 10
3sin2x-7sin x+2=0
Solving the equation, we get
=19.47122
x= nπ + (-1)n a
For
n=0, x=a
n=1, x = π – a
n=2, x = 2π + a
n=3, x = 3π – a
n=4, x = 4π + a
n=5, x = 5π + a
So, there are 6 values less then 5π.
Option C.