Express each of the following as the sum or difference of sines and cosines:
(i) 2 sin 3x cos x
(ii) 2 cos 3x sin 2x
(iii) 2 sin 4x sin 3x
(iv) 2 cos 7x cos 3x
(i) We know, 2 sin A cos B = sin(A + B) + sin(A – B)
2 sin 3x cos x = sin (3x + x) + sin (3x – x)
= sin (4x) + sin (2x)
= sin 4x + sin 2x
(ii) We know, 2 cos A sin B = sin (A + B) – sin (A – B)
2 cos 3x sin 2x = sin (3x + 2x) – sin (3x – 2x)
= sin (5x) – sin (x)
= sin 5x – sin x
(iii) We know, 2 sin A sin B = cos (A – B) – cos (A + B)
2 sin 4x sin 3x = cos (4x – 3x) – cos (4x + 3x)
= cos (x) – cos (7x)
= cos x – cos 7x
(iv) We know, 2 cos A cos B = cos (A + B) + cos (A – B)
2 sin 3x cos x = cos (7x + 3x) + cos (7x – 3x)
= cos (10x) + cos (4x)
= cos 10x + cos 4x
i. We know, 2 sin A sin B = cos (A – B) – cos (A + B)
= cos 60° - cos 90°
Hence Proved
ii. We know, 2 cos A cos B = cos (A + B) + cos (A – B)
= cos 90° + cos 60°
Hence Proved
iii. We know, 2 sin A cos B = sin (A + B) + sin (A – B)
= sin 90° + sin 60°
Hence Proved
Show that:
i.
ii.
i. We know, 2 sin A cos B = sin (A + B) + sin (A – B)
{sin (-x) = - sin x}
{sin (180° - x) = sin x}
Hence Proved
ii. We know, 2 sin A cos B = sin (A + B) + sin (A – B)
Take L.H.S
{sin (-x) = - sin x}
= R.H.S.
Hence Proved
Prove that:
Take L.H.S
{2 cos A cos B = cos (A + B) + cos (A – B)}
= 2 cos x {cos 120° + cos 2x}
= 2 cos x {cos (180° - 60°) + cos 2x}
{cos (180° - A) = - cos A}
= 2 cos x (cos 2x - cos 60°)
= 2 cos 2x cos x – 2 cos x cos 60°
= cos 3x + cos x – cos x
= cos 3x = R.H.S.
Hence Proved
Prove that:
Take L.H.S
Multiplying & Dividing by 2:
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
{∵ cos (-A) = cos A}
Multiplying & Dividing by 2:
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
{∵ cos (180° - A) = - cos A}
= R.H.S
Hence Proved
Prove that:
Take L.H.S
cos 40° cos 80° cos 160°
Multiplying & Dividing by 2:
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
{∵ cos (180° - A) = - cos A & cos (180° + A) = - cos A}
Multiplying & Dividing by 2:
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
{∵ cos (180° - A) = - cos A}
= R.H.S
Hence Proved
Prove that:
Take L.H.S
sin 20° sin 40° sin 80°
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B)}
{∵ cos (-A) = cos A}
Multiplying & Dividing by 2:
{∵ 2 cos A sin B = sin (A + B) – sin (A – B)}
{∵ sin (-A) = - sin A}
{∵ sin (180° - A) = sin A}
= R.H.S
Hence Proved
Prove that:
Take L.H.S
cos 20° cos 40° cos 80°
Multiplying & Dividing by 2:
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
Multiplying & Dividing by 2:
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
{∵ cos (180° - A) = - cos A}
= R.H.S
Hence Proved
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Take L.H.S
tan 20° tan 40° tan 60° tan 80°
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B) &
2 cos A cos B = cos (A + B) + cos (A – B)}
{∵ cos (-A) = cos A}
{∵ 2 cos A sin B = sin (A + B) – sin (A – B) &
2 cos A cos B = cos (A + B) + cos (A – B)}
{∵ sin (-A) = - sin A}
{∵ sin (180° - A) = sin A & cos (180° - A) = - cos A}
= 3
= R.H.S
Hence Proved
Prove that:
tan 20° tan 30° tan 40° tan 80° = 1
Take L.H.S
tan 20° tan 40° tan 30° tan 80°
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B) &
2 cos A cos B = cos (A + B) + cos (A – B)}
{∵ cos (-A) = cos A}
{∵ 2 cos A sin B = sin (A + B) – sin (A – B) &
2 cos A cos B = cos (A + B) + cos (A – B)}
{∵ sin (-A) = - sin A}
{∵ sin (180° - A) = sin A & cos (180° - A) = - cos A}
= 1
= R.H.S
Hence Proved
Prove that:
Take L.H.S
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B)}
{∵ cos (-A) = cos A}
Multiplying & Dividing by 2:
{∵ 2 cos A sin B = sin (A + B) – sin (A – B)}
{∵ sin (-A) = - sin A}
{∵ sin (180° - A) = sin A}
= R.H.S
Hence Proved
Prove that:
Take L.H.S
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B)}
{∵ cos (-A) = cos A}
Multiplying & Dividing by 2:
{∵ 2 cos A sin B = sin (A + B) – sin (A – B)}
{∵ sin (-A) = - sin A}
{∵ sin (180° - A) = sin A}
= R.H.S
Hence Proved
Show that
i. sin A sin (B – C) + sin B sin (C – A) + sin C sin (A – B) = 0
ii. sin (B – C) cos (A – D) + sin (C – A) cos(B – D) + sin(A – B) cos(C – D) = 0
i. Take L.H.S
sin A sin (B – C) + sin B sin (C – A) + sin C sin (A – B)
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B)}
= 0
= R.H.S
Hence Proved
ii. sin (B – C) cos (A – D) + sin (C – A) cos(B – D) + sin(A – B) cos(C – D) = 0
Answer:
Take L.H.S
sin (B – C) cos(A – D) + sin (C – A) cos(B – D) + sin(A – B) cos(C – D)
Multiplying & Dividing by 2:
{∵ 2 sin A cos B = sin (A + B) + sin (A – B)}
= 0
= R.H.S
Hence Proved
Prove that:
Take L.H.S.
= tan x tan (60° - x) tan (60° + x)
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B) &
2 cos A cos B = cos (A + B) + cos (A – B)}
{cos (-A) = cos A}
{cos (180° - A) = - cos A}
Multiplying & Dividing by 2:
{∵ 2 cos A sin B = sin (A + B) – sin (A – B) &
2 cos A cos B = cos (A + B) + cos (A – B)}
= tan 3x
= R.H.S.
Hence Proved
Take L.H.S:
cos α cos β
Multiplying & Dividing by 2:
{2 cos A cos B = cos (A + B) + cos (A – B)}
We know,
Express each of the following as the product of sines and cosines:
i. sin 12x + sin 4x
ii. sin 5x – sin x
iii. cos 12x + cos 8x
iv. sin 2x + cos 4x
i.
sin 12x + sin 4x
= 2 sin 8x cos 4x
ii.
sin 5x – sin x
= 2 cos 3x sin 2x
iii.
cos 12x + cos 8x
= 2 cos 10x cos 2x
iv. sin 2x + cos 4x
= sin 2x + sin (90° - 4x)
= 2 sin (45° - x) cos (3x – 45°)
= 2 sin (45° - x) cos {-(45° - 3x)}
{cos (-x) = cos x}
= 2 sin (45° - x) cos (45° - 3x)
Prove that :
sin 38° + sin 22°= sin 82°
Take L.H.S:
sin 38° + sin 22°
= 2 sin 30° cos 8°
= cos 8°
= cos (90° - 82°)
{cos (90° - A) = sin A}
= sin 82°
= R.H.S
Hence Proved
Prove that :
cos 100° + cos 20° = cos 40°
Take L.H.S:
cos 100° + cos 20°
= 2 cos 60° cos 40°
= cos 40°
= R.H.S
Hence Proved
Prove that :
sin 50° + sin 10° = cos 20°
Take L.H.S:
sin 50° + sin 10°
= 2 sin 30° cos 20°
= cos 20°
= R.H.S
Hence Proved
Prove that :
sin 23° + sin 37° = cos 7°
Take L.H.S:
sin 23° + sin 37°
= 2 sin 30° cos -7°
{cos (-A) = cos A}
= cos 7°
= R.H.S
Hence Proved
Prove that :
sin 105° + cos 105° = cos 45°
Take L.H.S:
sin 105° + cos 105°
= sin 105° + sin (90° - 105°)
{sin (90° - A) = cos A}
= sin 105° + sin (- 15°)
{sin(-A) = - sin A}
= sin 105° - sin (15°)
= 2 cos 60° sin 45°
= cos 45°
= R.H.S
Hence Proved
Prove that :
sin 40° + sin 20° = cos 10°
Take L.H.S:
sin 40° + sin 20°
= 2 sin 30° cos 10°
= cos 10°
= R.H.S
Hence Proved
Prove that :
cos 55° + cos 65° + cos 175° = 0
Take L.H.S:
cos 55° + cos 65° + cos 175°
{cos (180° - A) = - cos A}
= 2 cos 60° cos (-5°) – cos 5°
{cos (-A) = cos A}
= cos 5° – cos 5°
= 0
= R.H.S
Hence Proved
Prove that :
sin 50° – sin 70° + sin 10° = 0
Take LHS:
sin 50° – sin 70° + sin 10°
= 2 cos 60° sin (-10°) + sin 10°
{sin (-A) = -sin (A)}
= - sin 10° + sin 10°
= 0
= R.H.S
Hence Proved
Prove that :
cos 80° + cos 40° – cos 20° = 0
Take L.H.S:
cos 80° + cos 40° – cos 20°
= 2 cos 60° cos 20° – cos 20°
= cos 20° – cos 20°
= 0
= R.H.S
Hence Proved
Prove that :
cos 20° + cos 100° + cos 140° = 0
Take L.H.S:
cos 20° + cos 100° + cos 140°
{cos (180° - A) = - cos A}
= 2 cos 60° cos (-40°) – cos 40°
{cos (-A) = cos A}
= cos 40° – cos 40°
= 0
= R.H.S
Hence Proved
Take L.H.S:
{cos A = sin (90° - A)}
= R.H.S.
Hence Proved
Prove that :
Take L.H.S:
{cos A = sin (90° - A)}
= 2 cos 45° sin 30°
= R.H.S.
Hence Proved
Prove that :
sin 80° – cos 70° = cos 50°
sin 80° – cos 70° = cos 50°
⇒ sin 80° = cos 50° + cos 70°
Take RHS:
cos 50° + cos 70°
= 2 cos 60° cos (-10°)
{cos (-A) = cos A}
= cos 10°
= cos (90° - 80°)
{cos (90° - A) = sin A}
= sin 80°
= L.H.S
Hence Proved
Prove that :
sin 51° + cos 81° = cos 21°
Take L.H.S:
sin 51° + cos 81°
= sin 51° + sin (90° - 81°)
{sin (90° - A) = cos A}
= sin 51° + sin 9°
= 2 sin 30° cos 21°
= cos 21°
= R.H.S
Hence Proved
Prove that:
i.
ii.
Take L.H.S:
{sin (π – A) = sin A}
= R.H.S.
Hence Proved
ii. Take L.H.S:
= R.H.S.
Hence Proved
Prove that:
i.
ii. sin 47° + cos 77° = cos 17°
Take L.H.S:
sin 65° + cos 65°
= sin 65° + sin (90° - 65°)
{sin (90° - A) = cos A}
= sin 65° + sin 25°
= 2 sin 45° cos 20°
= R.H.S
Hence Proved
ii. Take L.H.S:
sin 47° + cos 77°
= sin 47° + sin (90° - 77°)
{sin (90° - A) = cos A}
= sin 47° + sin 13°
= 2 sin 30° cos 17°
= cos 17°
= R.H.S
Hence Proved
Prove that :
cos 3A + cos 5A + cos 7A + cos 15A= 4 cos 4A cos 5A cos 6A
Take L.H.S.
cos 3A + cos 5A + cos 7A + cos 15A
= (cos 5A + cos 3A) + (cos 15A + cos 7A)
= 2 cos 4A cos A + 2 cos 11A cos 4A
= 2 cos 4A (cos 11A + cos A)
= 4 cos 4A cos 5A cos 6A
= R.H.S.
Hence Proved
Prove that :
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Take L.H.S.
cos A + cos 3A + cos 5A + cos 7A
= (cos 3A + cos A) + (cos 7A + cos 5A)
= 2 cos 2A cos A + 2 cos 6A cos A
= 2 cos A (cos 6A + cos 2A)
= 4 cos A cos 2A cos 4A
= R.H.S.
Hence Proved
Prove that :
Take L.H.S.
sin A + sin 2A + sin 4A + sin 5A
= (sin 2A + sin A) + (sin 5A + sin 4A)
= R.H.S.
Hence Proved
Prove that :
Take L.H.S.
sin 3A + sin 2A – sin A
= (sin 3A – sin A) + sin 2A
{sin 2A = 2 sin A cos A}
= 2 cos 2A sin A + 2 sin A cos A
= 2 sin A (cos 2A + cos A)
= R.H.S.
Hence Proved
Prove that :
Take L.H.S:
cos 20° cos 100° + cos 100° cos 140° - cos 140° cos 200°
Multiplying & Dividing by 2:
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
{cos (180° + A) = - cos A ;
cos (90° + A) = - sin A &
cos (360° - A) = cos A}
= R.H.S.
Hence Proved
Prove that :
Take L.H.S.:
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B)}
= sin 5x sin 2x
= R.H.S.
Hence Proved
Prove that :
Take L.H.S.:
Multiplying & Dividing by 2:
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
{sin (-A) = - sin A}
= cot A
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
{sin (-A) = - sin A}
= cot 8A
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
{sin (-x) = - sin x}
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
= tan 3A
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
= cot 3A
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
= tan 6A
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
= cot 6A
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B);
2 sin A cos B = sin (A + B) + sin (A – B) &
2 cos A cos B = cos (A + B) + cos (A – B)}
= tan A
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B) &
2 cos A sin B = sin (A + B) – sin (A – B)}
= tan 8A
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B);
2 sin A cos B = sin (A + B) + sin (A – B) &
2 cos A cos B = cos (A + B) + cos (A – B)}
{sin (-A) = - sin A}
= tan 2A
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
Multiplying & Dividing by 2:
{∵ 2 sin A sin B = cos (A – B) – cos (A + B) &
2 sin A cos B = sin (A + B) + sin (A – B)}
{sin (-A) = - sin A}
= tan 5A
= R.H.S.
Hence Proved
Prove that:
Take L.H.S.:
= R.H.S.
Hence Proved
Prove that:
Take R.H.S:
= tan θ
= R.H.S
Hence Proved
Prove that:
i.
ii. cos (A + B + C) + cos (A – B + C) + cos (A + B – C) + cos (-A + B + C) = 4 cos A cos B cos C
Take L.H.S:
{sin (-A) = - sin A}
{sin (-A) = - sin A}
= R.H.S.
Hence Proved
ii. Take L.H.S.:
cos(A + B + C) + cos (A – B + C) + cos(A + B – C) + cos(-A + B + C)
= {cos (A + B + C) + cos (A – B + C)} + {cos (A + B – C) + cos (-A + B + C)}
= 2 cos (A + C) cos B + 2 cos B cos (A – C)
= 2 cos B {cos (A + C) + cos (A – C)}
= 4 cos A cos B cos C
= R.H.S.
Hence Proved
prove that
Given,
Given,
cosec A + sec A = cosec B + sec B
⇒ sec A – sec B = cosec B – cosec A
{sin (-A) = - sin A}
If sin 2A = λ sin 2B, prove that:
Given,
sin 2A = λ sin 2B
Now,
Prove that:
i.
ii. sin(B– C)cos(A – D) + sin(C – A)cos(B – D) + sin(A – B)cos(C – D) = 0
Take L.H.S.
{sin (-A) = -sin A & cos (-A) = cos A}
= cot C
= R.H.S.
Hence Proved
ii. Take L.H.S.:
sin(B– C)cos(A – D) + sin(C – A)cos(B – D) + sin(A – B)cos(C – D)
Multiplying & Dividing by 2:
{∵ 2 sin A cos B = sin (A + B) + sin (A – B)}
{sin (-A) = -sin A}
= 0
= R.H.S.
Hence Proved
prove that tan A tan B tan C tan D= -1
Given,
Adding 1 both sides:
Now,
Subtracting 1 both sides:
Dividing equation (i) by equation (ii):
⇒ -1 = tan A tan B tan C tan D
This proves that tan A tan B tan C tan D = -1
If cos (α + β) sin (γ + δ) = cos (α - β) sin (γ - δ), prove that cot α cot β cot γ = cot δ
Given,
cos (α + β) sin (γ + δ) = cos (α - β) sin (γ – δ)
Adding 1 both sides:
Now,
Subtracting 1 both sides:
Dividing equation (i) by equation (ii):
{sin (-A) = -sin A & cos (-A) = cos A}
⇒ cot α cot β cot γ = cot δ
Hence Proved
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y -x) cot θ
Given, y sin ϕ = x sin (2θ + ϕ)
Adding 1 both sides:
Now,
Adding 1 both sides:
Dividing equation (i) by equation (ii):
{sin (-A) = -sin A & cos (-A) = cos A}
⇒ (x + y) cot (θ + ϕ) = (y -x) cot θ
Hence Proved
If cos (A + B) sin (C – D) = cos (A – B) sin (C + D), prove that tan A tan B tan C + tan D = 0
Given,
cos (A + B) sin (C – D) = cos (A – B) sin (C + D)
Adding 1 both sides:
Now,
Subtracting 1 both sides:
Dividing equation (i) by equation (ii):
⇒ -tan D = tan A tan B tan C
⇒ tan D = -tan A tan B tan C
⇒ tan A tan B tan C + tan D = 0
Hence Proved
Given,
Now,
Now,
Now,
Now,
xy + yz + xz
{∵ cos (A + B) = cos A cos B – sin A sin B}
{sin (180° - A) = sin A ; sin (180° + A) = -sin A;
cos (180° - A) = -cos A & cos (180° + A) = -cos A }
= 0
= R.H.S.
Hence Proved
Given, m sin θ = n sin (θ + 2α)
Using Componendo - Dividendo:
Hence Proved
If (cos α + cos β)2 + (sin α + sin β)2 write the value of λ.
(cos α + cos β)2 + (sin α + sin β)2
= (cos2 α + 2cos α cos β + cos2 β) + (sin2 α + 2sin α sin β + sin2 β)
Rearranging the terms,
= (cos2 α + sin2 α) + (cos2 β + sin2 β) + 2(cos α cos β + sin α sin β)
= 1 + 1 + 2cos (α – β)
= 2{1 + cos (α – β)}
=
= 4cos2
Comparing with question, λ = 4 (Ans)
(Ans)
If sin A + sin B = α and cos A + cos B = β, then write the value of
sin A + sin B = α
…(I)
cos A + cos B = β
…(II)
Dividing equation (I) by equation (II), we get –
or, (Ans)
If cos A = m cos B, then write the value of
=
Ans:
Write the value of the expression
= 1 (Ans)
If and cos A + cos B = 1, then find the value of
cos A + cos B = 1
(Ans)
Write the value of
…(I)
Now,
Since, sin is positive,
Now,
And,
or,
Putting these values in (I),
(Ans)
If sin 2A = λ sin 2B, then write the value of
(Ans)
Write the value of
= tan 2A (Ans)
If cos (A + B) sin (C – D) = cos (A – B) sin (C + D), then write the value tan A tan B tan C.
cos (A + B) sin (C – D) = cos (A – B) sin (C + D)
(To make the math easier, while expanding this out I’ll use c A instead of cos A and s A instead of sin A)
⇒ (c A c B – s A s B)(s C c D – c C s D) = (c A c B + s A s B)(s C c D + c C s D)
⇒ c A c B s C c D – c A c B c C s D – s A s B s C c D + s A s B c C s D = c A c B s C c D +
c A c B c C s D + s A s B s C c D + s A s B c C s D
⇒ 2s A s B s C c D = -2c A c B c C s D
⇒ sin A sin B sin C cos D = -cos A cos B cos C sin D
⇒ tan A tan B tan C = - tan D (Ans)
Mark the Correct alternative in the following:
cos 40o + cos 80o + cos 160o + cos 240o =
A. 0
B. 1
C. 1/2
D. -1/2
cos 40° + cos 80° + cos 160° + cos 240°
= (cos 40° + cos 80°) + (cos 160° + cos 240°)
= 2 + 2
= 2cos 60° cos 20° + 2cos 200° cos 40°
= 2⋅ 1/2 ⋅cos 20° + 2cos (180 + 20)° cos 40°
= cos 20° - 2cos 20° cos 40°
= cos 20° - (cos (40° + 20°) + cos (40° - 20°))
= cos 20° - (cos 60° + cos 20°)
= - cos 60°
= - 1/2 (Ans)
Mark the Correct alternative in the following:
sin 163o cos 347o + sin 73o sin 167o =
A. 0
B. 1/2
C. 1
D. None of these
sin 163° cos 347° + sin 73° sin 167°
= sin (180° - 17° ) cos (360° - 13°) + sin (90° - 17°) sin (180° - 13°)
= sin 17° cos 13° + cos 17° sin 13°
= sin (17° + 13°)
= sin 30°
= 1/2 (Ans)
Mark the Correct alternative in the following:
If and then
A. 3/8
B. 5/8
C. 3/4
D. 5/4
sin 2θ + sin 2ϕ = 1/2
⇒ 2sin (θ + ϕ) cos (θ – ϕ) = 1/2 …(I)
cos 2θ + cos 2ϕ = 3/2
⇒ 2cos (θ + ϕ) cos (θ – ϕ) = 3/2 …(II)
Dividing equation (I) by equation (II) –
tan (θ + ϕ) = 1/3
⇒ tan2 (θ +ϕ) = 1/9
⇒ 1 + tan2 (θ + ϕ) = 1 + 1/9 = 10/9
Substituting this value of cos (θ + ϕ) in (II), we get –
(Ans)
Mark the Correct alternative in the following:
The value of cos 52o + cos 68o + cos 172o is
A. 0
B. 1
C. 2
D. 3/2
cos 52° + cos 68° + cos 172°
= (cos 52° + cos 68°) + cos 172°
= 2cos 60° cos 8° + cos (180° - 8°)
= 2 ⋅ 1/2 ⋅ cos 8° - cos 8°
= cos 8° - cos 8°
= 0 (Ans)
Mark the Correct alternative in the following:
The value of sin 78o – sin 66o – sin 42o + sin 6o is
A. 1/2
B. -1/2
C. -1
D. None of these
sin 78° - sin 66° - sin 42° + sin 6°
= (sin 78° - sin 42°) – (sin 66° - sin 6°)
= 2cos 60° sin 18° - 2cos 36° sin 30°
= 2 ⋅ 1/2 ⋅ sin 18° - 2 ⋅ 1/2 ⋅ cos 36°
= sin 18° - cos 36°
=
= - 1/2 (Ans)
Mark the Correct alternative in the following:
If sin α + sin β = a and cos α – cos β = b, then
A.
B.
C.
D. None of these
sin α + sin β = a
⇒ = a …(I)
cos α – cos β = b
⇒ = b …(II)
Dividing equation (II) by equation (I) –
or,
(Ans)
Mark the Correct alternative in the following:
cos 35o + cos 85o + cos 155o =
A. 0
B.
C.
D. cos 275o
cos 35° + cos 85° + cos 155°
= 2 + cos 155°
= 2cos 60° cos 25° + cos (180°-25°)
= 2 ⋅ 1/2 ⋅ cos 25° - cos 25°
= cos 25° - cos 25°
= 0 (Ans)
Mark the Correct alternative in the following:
The value of sin 50o – sin 70o + sin 10o is equal to
A. 1
B. 0
C. 1/2
D. 2
sin 50° - sin 70° + sin 10°
= (sin 50° + sin 10°) – sin 70°
= 2sin 30° cos 20° - sin (90° - 20°)
= 2 ⋅ 1/2 ⋅ cos 20° - cos 20°
= cos 20° - cos 20°
= 0
Mark the Correct alternative in the following:
sin 47o + sin 61o – sin 11o – sin 25o is equal to
A. sin 36o
B. cos 36o
C. sin 7o
D. cos 7o
sin 47° + sin 61° - sin 11° - sin 25°
= (sin 47° - sin 25°) + (sin 61° - sin 11°)
= 2cos 36° sin 11° + 2cos 36° sin 25°
= 2cos 36° (sin 11° + sin 25°)
= 2cos 36° (2sin 18° cos 7°)
= 4cos 36° sin 18° cos 7°
= cos 7°
Mark the Correct alternative in the following:
If cos A = m cos B, then =
A.
B.
C.
D. None of these
Mark the Correct alternative in the following:
If A, B, C are in A.P., then
A. tan B
B. cot B
C. tan 2 B
D. None of these
Let common difference be d.
Then A = B – d and C = B + d
So,
= cot B (Ans)
Mark the Correct alternative in the following:
If sin (B + C – A), sin (C + A – B), sin (A + B – C) are in A.P., then cot A, cot B, cot C are in
A. GP
B. HP
C. AP
D. None of these
sin (B + C – A), sin (C + A – B), sin (A + B – C) are in A.P.
⇒ 2sin (C + A – B) = sin (B + C – A) + sin (A + B – C)
⇒ 2sin (C + A – B) = 2sin {(B + C – A + A + B – C)/2} cos {(B + C – A – A – B + C)/2}
⇒ sin {(C + A) – B} = sin B cos (C – A)
⇒ sin (C + A) cos B – cos (C + A) sin B = sin B cos (C – A)
⇒ {sin C cos A + cos C sin A} cos B – {cos C cos A – sin C sin A} sin B = sin B {cos C cos A + sin C sin A}
⇒ cos A cos B sin C + sin A cos B cos C – cos A sin B cos C + sin A sin B sin C = cos A sin B cos C + sin A sin B sin C
⇒ cos A cos B sin C + sin A cos B cos C = 2cos A sin B cos C
⇒ cos B (cos A sin C + sin A cos C) = 2cos A sin B cos C
∴ cot A, cot B, cot C are in H.P. (Ans)
Mark the Correct alternative in the following:
If then sin 3x + sin 3y =
A. 2 sin 3x
B. 0
C. 1
D. None of these
sin x + sin y = √3 (cos y – cos x)
⇒ x + y = 0 or
⇒ x = -y
or
⇒ x = -y
or
Putting these values of x in sin 3x + sin 3y,
For x = -y
sin 3x + sin 3y
= sin 3(-y) + sin 3y
= -sin 3y + sin 3y
= 0
For
sin 3x + sin 3y
= sin (3y + π) + sin 3y
= -sin 3y + sin 3y
= 0
So, sin 3x + sin 3y = 0 (Ans)
Mark the Correct alternative in the following:
If and then
α + β is equal to
A. π/2
B. π/3
C. π/6
D. π/4
tan α = and tan β =
tan (α + β) =
⇒ tan (α + β) = 1
(Ans)