Buy BOOKS at Discounted Price

Trigonometric Ratios

Class 10th Mathematics RD Sharma Solution
Exercise 5.1
  1. In each of the following, one of the six trigonometric ratios is given. Find the…
  2. In a deltaabc , right angled at B, AB = 24 cm, BC = 7 cm. then find the other…
  3. In Fig. 5.37, find tan P and cot R. Is tan P = cot R?
  4. If sina = 9/41 , compute cos A and tan A.
  5. Given 15 cot A =8, find sin A and sec A.
  6. In triangle pqr , right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of…
  7. If cottheta = 7/2 , evaluate: (i) (1+sintegrate heta) (1-sintegrate…
  8. If 3 cot A = 4, check whether 1-tan^2a/1+tan^2a = cos^2a-sin^2a or not.…
  9. If tantheta = a/b , find the value of costheta +sintegrate heta /costheta…
  10. If 3 tan = 4, find the value of 4costheta -sintegrate heta /2costheta…
  11. If 3 cot theta = 2, find the value of 4sintegrate heta -3costheta /2sintegrate…
  12. If tantheta = a/b , prove that asintegrate heta -bcostheta /asintegrate heta…
  13. If sectheta = 13/5 , show that 2sintegrate heta -3costheta /4sintegrate heta…
  14. If costheta = 12/13 , show that sin theta (1-tan theta) = 35/156
  15. If cot theta = 1/root 3 , show that 1-cos^2theta /2-sin^2theta = 3/5…
  16. If tan theta = 1/root 7 , show that costheta c^2theta -sec^2theta /costheta…
  17. If sintegrate heta = 12/13 , find the value of
  18. If sectheta = 5/4 , find the value of sintegrate heta -2costheta /tantheta…
  19. If costheta = 5/13 , find the value of sin^2theta -cos^2theta /2sintegrate heta…
  20. If tantheta = 12/13 , find the value of 2sintegrate heta costheta /cos^2theta…
  21. If costheta = 3/5 , find the value of
  22. If sintegrate heta = 3/5 , find the value of costheta - 1/tantheta /2cottheta…
  23. If seca = 5/4 , verify that 3sina-4sin^3a/4cos^3a-3cosa =
  24. If sintegrate heta = 3/4 , prove that root cosec^2theta -cot^2theta /sec^2theta…
  25. If sec A = 17/8 , verify that 3-4sin^2a/4cos^2a-3 = 3-tan^2a/1-3tan^2a…
  26. If cottheta = 3/4 , prove that root sectheta -costheta c theta /sectheta…
  27. If tantheta = 24/7 , find that sintegrate heta +costheta .
  28. If sintegrate heta = a/b , find in terms of a and b.
  29. If 8 tan A = 15, find sina-cosa
  30. If 3costheta -4sintegrate heta = 2costheta +sintegrate heta , find tantheta…
  31. If tantheta = 20/21 , show that 1-sintegrate heta +costheta /1+sintegrate heta…
  32. If coseca = 2 , find the value of 1/tana + sina/1+cosa
  33. If angle a angle b are acute angles such that cos A = cos B, then show that…
  34. If angle a angle p are acute angles such that tan A = tan P, then show that…
  35. In a ABC, right angled at A, if tan C = 3, find the value of sin B cos C + cos…
  36. State whether the following are true or false. Justify your answer. (i) The…
Exercise 5.2
  1. sin45^circle sin30^circle + cos45^circle cos30^circle Evaluate each of the…
  2. Evaluate each of the following: sin60^circle cos30^circle + cos60^circle…
  3. Evaluate each of the following: cos60 cos45 - sin60 sin 45
  4. sin^230^circle + sin^245^circle + sin^260^circle + sin^290^circle Evaluate each…
  5. cos^230^circle + cos^245^circle + cos^260^circle + cos^290^circle Evaluate each…
  6. tan^230^circle + tan^260^circle + tan^245^circle Evaluate each of the following:…
  7. 2sin^230^circle - 3cos^245^circle + tan^260^circle Evaluate each of the…
  8. sin^230^circle cos^245^circle + 4tan^230^circle + 1/2 sin^290^circle…
  9. 4 (sin^460^circle + cos^430^circle) - 3 (tan^260^circle - tan^245^circle)…
  10. (cosec^245^circle sec^230^circle) (sin^230^circle + 4cot^245^circle…
  11. cosac^330^circle cos60^circle tan^345^circle sin^290^circle sec^245^circle…
  12. cot^230^circle - 2cos^260^circle - 3/4 sec^245^circle - 4sec^230^circle…
  13. (cos 0+sin 45+sin 30) (sin 90 - cos45 + cos60) Evaluate each of the following:…
  14. sin30^circle - sin90^circle + 2cos0^circle /tan30^circle tan60^circle Evaluate…
  15. 4/cot^230^circle + 1/sin^260^circle - cos^245^circle Evaluate each of the…
  16. 4 (sin^430^circle + cos^260^circle) -3 (cos^245^circle -sin^290^circle)…
  17. tan^260^circle + 4cos^245^circle + 3sec^230^circle + 5cos^290^circle…
  18. sin30^circle /sin45^circle + tan45^circle /sec60^circle - sin60^circle…
  19. tan45^circle /cos6630^circle + sec60^circle /cot45^circle - 5sin90^circle…
  20. 2sin3x = root 3 Find the value of x in each of the following:
  21. 2sin x/2 = 1 Find the value of x in each of the following:
  22. root 3 sinx = cosx Find the value of x in each of the following:
  23. tanx = sin45^circle cos45^circle + sin30^circle Find the value of x in each of…
  24. root 3 tan2x = cos60^circle +sin45^circle cos45^circle Find the value of x in…
  25. cos2x = cos60^circle cos30^circle +31560^circle sin30^circle Find the value of…
  26. If theta = 30^circle , verify that: (i) tan2theta = 2tantheta /1-tan^2theta…
  27. If a = b = 60^circle , verify that (i) cos (a-b) = cosacosb+sinasinb (ii) sin…
  28. If A = 30 and B = 60, verify that (i) sin (a+b) = sinacosb+cosasinb . (ii) cos…
  29. If sin (A - B) = sin A cos B cos A sin B and cos (A - B) = cos A cos B + sin A…
  30. In a right triangle ABC, right angled at C, if angle b = 60 and AB = 15 units.…
  31. If deltaabc is a right triangle such that angle c = 90, angle a = 45 and BC = 7…
  32. In a rectangle ABCD, AB = 20 cm, angle bac = 60, calculate side BC and…
  33. If tan (A - B) = 1/root 3 and tan (A + B) = root 3 , 0 A + B 90, A B find A and…
  34. If sin (A - B) = 1/2 and cos (A + B) = 1/2 , 0 A + B 90, A B find A and B.…
  35. In a deltaabc right angled at B, angle a = angle c . Find the values of (i)…
  36. Find acute angles A and B, if sin (A + 2B) = root 3/2 and cos (A + 4B) = 0, A…
  37. If A and B ae acute angles such that tan A = 1/2 , tan B = 1/3 and tan (A + B)…
  38. In deltapqr , right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine angle p…
Exercise 5.3
  1. (i) sin20^circle /cos70^circle (ii) cos19^circle /sin71^circle (iii)…
  2. (i) (sin49^circle /cos41^circle)^2 + (cos41^circle /sin49^circle)^2 (ii)…
  3. Express each one of the following in terms of trigonometric ratios of angles…
  4. Express cos75^circle + cot75^circle in terms of angles between 0 and 30.…
  5. If sin 3A = cos (A - 26), where 3A is an acute angle, find the value of A.…
  6. If A, B, C, are the interior angles of a triangle ABC, prove that (i) tan…
  7. Prove that: (i) tan20^circle tan35^circle tan45^circle tan55^circle tan70^circle…
  8. Prove the following: (i) sintegrate heta sin (90^circle - theta) - costheta cos…
  9. Evaluate: (i) 2/3 (cos^430^circle - sin^445^circle) - 3 (sin^260^circle -…
  10. In sintegrate heta = cos (theta -45^circle) where theta theta -45^circle are…
  11. If A, B, C are the interior angles of a deltaabc , show that: (i) sin b+c/2 =…
  12. If 2 theta +45^circle 30^circle - theta are acute angles, find the degree…
  13. If theta is a positive acute angle such that sectheta = cosec60^circle , find…
  14. If cos2theta = sin4theta , where 2 theta and 4 theta are acute angles, find the…
  15. If sin3theta = cos (theta -6^circle) , where 3 theta and theta -6^circle are…
  16. If sec4a = cosec (a-20^circle) , where 4a is an acute angle, find the value of…
  17. If sec2a = cosec (a-42^circle) , where 2a is an acute angle, find the value of…
Cce - Formative Assessment
  1. Write the maximum and minimum values of sin θ.
  2. If θ is an acute angle such that cos θ = 3/5, then sintegrate heta tantheta…
  3. Write the maximum and minimum values of cos θ.
  4. If tan θ = a/b then asintegrate heta +bcostheta /asintegrate heta -bcostheta is equal…
  5. What is the maximum value of 1/sectheta ?
  6. If 5 tan θ - 4 = 0, then the value of 5sintegrate heta -4costheta /5sintegrate heta…
  7. What is the maximum value of 1/cosectheta ?
  8. If 16 cot x = 12, then sinx-cosx/sinx+cosx equalsA. 1/7 B. 3/7 C. 2/7 D. 0…
  9. If 8 tan x = 15, then sin x - cos x is equal toA. 7/17 B. 17/7 C. 1/17 D. 7/17…
  10. If tantheta = 4/5 , find the value of costheta -sintegrate heta /costheta +sintegrate…
  11. If tantheta = 1/root 7 , then cosec^2theta -sec^2theta /cosec^2 + sec^2theta =A. 5/7 B.…
  12. If costheta = 2/3 , find the value of sectheta -1/sectheta +1
  13. If tan θ = 3/4, then cos^2 θ - sin^2 θ =A. 7/25 B. 1 C. 4/25 D. 4/25…
  14. If 3cot θ = 4, find the value of 4costheta -sintegrate heta /2costheta +sintegrate heta…
  15. If θ is an acute angle such that tan^2 θ = 8/7, then the value of (1+sintegrate heta)…
  16. Given tantheta = 1/root 5 , what is the value of cosec^2theta -sec^2theta /cosec^2theta…
  17. If 3cos θ = 5 sin θ, then the value of 5sintegrate heta -2sec^3theta +2costheta…
  18. If cottheta = 1/root 3 , rite the value of 1-cos^2theta /2-sin^2theta…
  19. If tan^2 45° - cos^2 30° = x sin 45° cos 45°, then x =A. 2 B. - 2 C. -1/2 D. 1/2…
  20. If tan A = 3/4 and A + B = 90°, then what is the value of cot B ?…
  21. The value of cos^2 17° - sin^2 73° isA. 1 B. 1/3 C. 0 D. -1
  22. If A + B = 90° and cos B = 3/5, what is the value of sin A?
  23. The value of cos^320^circle - cos^370^circle /sin^370^circle - sin^320^circle isA. 1/2…
  24. Write the acute angle θ satisfying √3 sin θ = cos θ
  25. If xcosec^230^circle sec^245^circle /8cos^245^circle sin^260^circle = tan^2 60° -…
  26. Write the value of cos 1° cos 2° cos 3°…. cos 179° cos 180°.
  27. If A and B are complementary angles, thenA. sin A = sin B B. cos A = cos B C. tan A =…
  28. Write the value of tan 10° tan 15° tan 75° tan 80°.
  29. If x sin (90 - 0) cot (90 -) = cos (90 -), then x =?A. 0 B. 1 C. - 1 D. 2…
  30. If A + B = 90° and tan A = 3/4, what is cot B?
  31. If tan A = 5/12, find the value of (sin A + cos A) sec A.
  32. If x tan 45° cos 60° = sin 60° cot 60°, then x is equal toA. 1 B. √3 C. 1/2 D. 1/√2…
  33. If angles A, B, C of a ΔABC form an increasing AP, then sin B =A. 1/2 B. √3/2 C. 1 D.…
  34. If θ is an acute angle such that sec^2 θ = 3, then the value of tan^2theta…
  35. The value of tan 1° tan 2° tan 3° ……tan 89° isA. 1 B. -1 C. 0 D. None of these…
  36. The value of cos 1° cos 2° cos 3°…… cos 180° isA. 1 B. 0 C. -1 D. None of these…
  37. The value of tan 10° tan 15° tan 75o tan 80. isA. - 1 B. 0 C. 1 D. None of these…
  38. The value of cos (90^circle - theta) sec (90^circle - theta) tantheta /cosec…
  39. If θ and 2θ - 45° are acute angles such that sin θ = cos (2θ - 45°), then tan θ is…
  40. If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ - √3 tan 4θ is…
  41. If A + B = 90°, then tanatanb+tanacotb/sinasecb - sin^2b/cos^2a is equal toA. cot^2 A…
  42. 2tan30^circle /1+tan^230^circle is equal toA. sin 60° B. cos 60° C. tan 60° D. sin 30°…
  43. 1-tan^245^circle /1+tan^245^circle is equal toA. tan 90° B. 1 C. sin 45° D. sin 0°…
  44. sin 2A = 2 sin A is true when A =A. 0° B. 30° C. 45° D. 60°
  45. 2tan30^circle /1-tan^230^circle is equal toA. cos 60° B. sin 60° C. tan 60° D. sin 30°…
  46. If A, B and C are interior angles of a triangle ABC, then sin (b+c/2) =.A. sin A/2 B.…
  47. If cos θ = 2/3 then 2 sec^2 θ + 2tan^2 θ - 4 is equal toA. 1 B. 0 C. 3 D. 4…
  48. tan 5° × tan 30° × 4 tan 85° is equal toA. 4/√3 B. 4√3 C. 1 D. 4
  49. The value of tan55^circle /cot35^circle + cot1° cot 2° cot 3°.... cot 90°, isA. - 2 B.…
  50. In Fig. 5.47, the value of cos ϕ is A. 5/4 B. 5/3 C. 3/5 D. 4/5
  51. In Fig. 5.48, AD = 4 cm BD = 3 cm and CB = 12 cm, find cot θ.A. 12/13 B. 5/12 C. 13/12…

Exercise 5.1
Question 1.

In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) (x)

(xi) (xii)


Answer:

(i)


(ii)



(iii)



(iv)



(v)



(vi)




(vii)



(viii)



(ix)



(x)



(xi)



(xii)




Question 2.

In a , right angled at B, AB = 24 cm, BC = 7 cm. Determine
i-sinA,cosA
ii-sinC, cosC


Answer:

In a , right angled at B, AB = 24 cm, BC = 7 cm. Therefore, By Pythagoras Theorem,


Therefore,


Question 3.

In Fig. 5.37, find tan P and cot R. Is tan P = cot R?



Answer:

By Pythagoras theorem we know that,

(Hypotenuse)2 = (Base)2 + (Perpendicular)2

Now we have the figure as



we also know that,





Note: When finding any trigonometric ratio, the main part is to decide perpendicular and base for that angle. Perpendicular is the side opposite to the angle for which we are calculating. For example from above figure if we are calculating sin R, then side opposite to R is PQ, So PQ will be perpendicular, PR is Hypotenuse and the side left out will be base.


Question 4.

If , compute cos A and tan A.


Answer:



Question 5.

Given 15 cot A =8, find sin A and sec A.


Answer:

Given



By Pythagoras theorem,




Question 6.

In , right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.


Answer:

Given: In , right angled at Q, PQ = 4 cm and RQ = 3 cm.

To find: the values of sin P, sin R, sec P and sec R.

Solution:

In triangle PQR, , PQ = 4 cm and RQ = 3 cm

By Pythagoras theorem,





Use the formula sinθ = perpendicular / hypotenuse

Secθ = hypotenuse / base




NOTE: Always check on which angle you are asked to find any trignometric
value and take perpendicular,base,hypotenuse accordingly.


Question 7.

If , evaluate:

(i)

(ii)


Answer:

(i)


(ii)


Question 8.

If 3 cot A = 4, check whether or not.


Answer:


Thus, it is true.



Question 9.

If , find the value of


Answer:

Given:

To find: the value of

Solution:


Take cosΘ common,

And use the formula:



Solve,


Thus, it is true.


Question 10.

If 3 tanθ = 4, find the value of


Answer:

Given:3 tanθ = 4
To find: the value of
Solution:

Here,3 tanθ = 4

Use the formula,

Solve,


Question 11.

If 3 cot = 2, find the value of


Answer:



Question 12.

If , prove that


Answer:

Given:
To prove: ...... (1)
Solution:

Consider LHS of eq. (1)
Take b cosθ common from both numerator and denominator.

Solve using the formula:


Put the value of tanθ to get,



hence proved


Question 13.

If , show that


Answer:



Question 14.

If , show that sin (1-tan) =


Answer:

Given:
To prove:
sin (1-tan) =

Proof:
we know,

Where B is base and H is hypotenuse of the right angled triangle.
We construct a right triangle ABC right angled at B such that
Perpendicular is AB, Base is BC = 12 and hypotenuse is AC = 13.
In the triangle ABC,
By Pythagoras theorem, we have

132 = AB2+122
169 = AB2+144
169-144=AB2
25=AB2


So,

Put the values in sin (1-tan) to find its value,

Hence Proved.


Question 15.

If cot = , show that


Answer:


Hence Proved.



Question 16.

If tan = , show that


Answer:


Hence Proved.



Question 17.

If , find the value of


Answer:

Given:


To find: the value of


Solution:


Since




So implies:

Perpendicular = AC = 12, Hypotenuse = BC = 13

Draw a right angled triangle at C,




By Pythagoras theorem,

AB2 = AC2 + BC2

⇒ (13)2 = (12)2 + BC2

⇒ BC2 = (13)2 - (12)2

⇒ BC2 = 169 - 144

⇒ BC2 = 25



⇒ BC = 5

Since cosθ = Base/Hypotenuse and tanθ = Perpendicular/Base



Substitute the known values in ,





















Question 18.

If , find the value of


Answer:



Question 19.

If , find the value of


Answer:



Question 20.

If , find the value of


Answer:



Question 21.

If , find the value of


Answer:

Given:


To find: the value of

Solution:

We know:




By applying Pythagoras theorem,we have


(Hypotenuse)2 = (Base)2 + (Perpendicular)2

⇒ BC2 = AB2 + AC2

⇒ BC2 = 32 + 42

⇒ BC2 = 9 + 16

⇒ BC2 = 25

⇒ BC =

⇒ BC = 5



Use:









Substitute the known values,












Question 22.

If, find the value of


Answer:



Question 23.

If , verify that


Answer:



Question 24.

If , prove that


Answer:



Question 25.

If sec A = , verify that


Answer:



Question 26.

If , prove that


Answer:



Question 27.

If , find that .


Answer:



Question 28.

If , find in terms of a and b.


Answer:

Given:


To find: in terms of a and b.
Solution:



We will construct a right angled triangle, right angled at B such that,

Perpendicular=BC=a and hypotenuse=AC=b
AC2 =AB2 + BC2
b2 =AB2 + a2
AB2 = b2 - a2


Use the formula:

Solve,


Question 29.

If 8 tan A = 15, find


Answer:



Question 30.

If , find


Answer:



Question 31.

If , show that


Answer:

Given:


To show:

Solution:

Since tanθ = perpendicular / base

So we construct a right triangle ABC right angled at C such that

∠ABC=θ and AC = Perpendicular = 20
BC = base = 21

By Pythagoras theorem,

AB2 = AC2 + BC2

⇒ AB2 = (20)2 + (21)2

⇒ AB2 = 400 + 441

⇒ AB2 = 841

⇒ AB = √841

⇒ AB = 29


As sinθ = perpendicular / hypotenuse

cosθ = base / hypotenuse

So,


Hence proved


Question 32.

If , find the value of


Answer:



Question 33.

If are acute angles such that cos A = cos B, then show that .


Answer:

In a right angled triangle ABC,


We have, opposite sides of equal angles are equal. Therefore, In a right angled triangle ABC




Question 34.

If are acute angles such that tan A = tan P, then show that .


Answer:

In a right angled triangle APQ,




Question 35.

In a ΔABC, right angled at A, if tan C = √3, find the value of sin B cos C + cos B sin C.


Answer:

In a ΔABC, right angled at A,

tan C = √3

i.e ∠C = 60° and ∠B = 90 - 60 = 30°

Sin C = Sin 60° = √3/2

Cos C = Cos 60° = 1/2

Sin B = Sin 30° = 1/2

Cos B = Cos 30° = √3/2

According to the question,

sin B cos C + cos B sin C

= (1/2) (1/2) + (√3/2) (√3/2)

= 1/4 + 3/4

= 1


Question 36.

State whether the following are true or false. Justify your answer.

(i) The value of tan A is always less than (ii) for some value of angle A.

(iii) cos A is the abbreviation used for the cosecant of angle A.

(iv) cot A is the product of cot and A.

(v) for some angle .


Answer:

(i) The value of tan 90° is greater than 1. Therefore, given statement is false.

(ii) as 12 is the hypotenuse largest side. Therefore, given statement is true.


(iii) cos A is the abbreviation used for cosine of angle A Therefore, given statement is true.


(iv) cot A is not the product of cot and A. Therefore, given statement is false.


(v) Since, the hypotenuse is the longest side whereas in sin A = , 3 which is the denominator and cannot be hypotenous.




Exercise 5.2
Question 1.

Evaluate each of the following:



Answer:

Given:
To find:
The value of above equation.
Solution:
Use the values:

Solve,




Question 2.

Evaluate each of the following:


Answer:

Given :
To find : The value of
Solution :
Use the values:

Solve,

Hence the value of is 1.


Question 3.

Evaluate each of the following:
cos60° cos45° - sin60° sin 45°


Answer:


Question 4.

Evaluate each of the following:



Answer:



Question 5.

Evaluate each of the following:



Answer:



Question 6.

Evaluate each of the following:



Answer:



Question 7.

Evaluate each of the following:



Answer:



Question 8.

Evaluate each of the following:



Answer:



Question 9.

Evaluate each of the following:



Answer:

Given: 4 (sin4 60° + cos4 30°)-3 (tan2 60° - tan2 45°) + 5cos2 45°

To find: The value of 4 (sin4 60° + cos4 30°)-3 (tan2 60° - tan2 45°) + 5cos2 45°.

Solution:

We know,



Substitute the above values in 4 (sin4 60° + cos4 30°)-3 (tan2 60° - tan2 45°) + 5cos2 45°,

Solve,


Question 10.

Evaluate each of the following:



Answer:



Question 11.

Evaluate each of the following:



Answer:



Question 12.

Evaluate each of the following:



Answer:



Question 13.

Evaluate each of the following:
( cos 0°+sin 45°+sin 30° ) ( sin 90° - cos 45° + cos 60° )


Answer:

Given: ( cos 0°+sin 45°+sin 30° ) ( sin 90° - cos 45° + cos 60° )
To find: The value of the above.
Solution:
Use the formulas:


Solve,
( cos 0°+sin 45°+sin 30° ) ( sin 90° - cos 45° + cos 60° )




Use the identity: (a-b)(a+b)=a2-b2






Question 14.

Evaluate each of the following:



Answer:



Question 15.

Evaluate each of the following:



Answer:



Question 16.

Evaluate each of the following:



Answer:



Question 17.

Evaluate each of the following:



Answer:



Question 18.

Evaluate each of the following:



Answer:



Question 19.

Evaluate each of the following:



Answer:



Question 20.

Find the value of x in each of the following:



Answer:



Question 21.

Find the value of x in each of the following:



Answer:



Question 22.

Find the value of x in each of the following:



Answer:

Given:
To find:
The value of
Solution:
Apply cross multiplication in the given expression,


Question 23.

Find the value of x in each of the following:



Answer:

Given :
To find : The value of x.
Solution :
Put the values:

solve,


Question 24.

Find the value of x in each of the following:



Answer:



Question 25.

Find the value of x in each of the following:



Answer:



Question 26.

If , verify that:

(i)

(ii)

(iii)

(iv)


Answer:

(i)

Use the values:


Hence proved

(ii)


Use the formula:



Hence proved

(iii)


Use the formula,




Hence proved


(iv)


Use the formula,




Hence proved


Question 27.

If , verify that

(i)

(ii)

(iii)


Answer:

(i)


(ii)



(iii)




Question 28.

If A = 30° and B = 60°, verify that

(i) .

(ii)


Answer:

(i)

Use the formula,


Hence proved

(ii)


Use the formula,



Question 29.

If sin (A - B) = sin A cos B – cos A sin B and cos (A - B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.


Answer:

For finding the values of sin 15º and cos 15°, we can split 15° into two angles such that,
15° = 45° - 30°

or we also can split 15° as 15° = 60° - 45°
You can use either way, answer won't change.
Formula to use for calculating this value is already given in the question,
sin(A - B) = sin A cos B - cos A sin B (1)
cos(A - B) = cos A cos B + sin A sin B (2)
Put A = 60° and B = 45°
A - B = 15°
Now put the values in formula 1 and 2,

And,


Thus we have,


Question 30.

In a right triangle ABC, right angled at C, if = 60° and AB = 15 units. Find the remaining angles and sides.


Answer:


In a right triangle ABC, right angled at C, if = 60° and AB = 15 units. Therefore,



And,





Question 31.

Ifis a right triangle such that = 90°, = 45° and BC = 7 units. Find , AB and AC.


Answer:

Ifis a right triangle such that = 90°, = 45° and BC = 7 units. Therefore,




And,





Question 32.

In a rectangle ABCD, AB = 20 cm, = 60°, calculate side BC and diagonals AC and BD.


Answer:

If rectangle ABCD AB = 20 cm, = 60°. Therefore,




And,



Therefore, AC = BD = 40 cm



Question 33.

If tan (A – B) = and tan (A + B) = , 0° < A + B ≤90°, A > B find A and B.


Answer:


On solving both equations, we get


A = 45° and B = 15°



Question 34.

If sin (A – B) = and cos (A + B) = , 0° < A + B ≤90°, A < B find A and B.


Answer:


On solving both equations, we get


A = 45°, B = 15°



Question 35.

In a right angled at B, . Find the values of

(i)

(ii)


Answer:

In a right angled at B, , therefore,


(i)



(ii)




Question 36.

Find acute angles A and B, if sin (A + 2B) = and cos (A + 4B) = 0, A > B.


Answer:

Given: sin (A + 2B) = and cos (A + 4B) = 0
To find: The values of acute angles A and B.
Solution:
We know,

So,


Solve eq. (1) and eq. (2) to get the values of a and b.
Subtract eq. (1) from eq. (2),
⇒A+4B-(A+2B)=90°-60°

⇒A+4B-A-2B=90°-60°
⇒2B=30°
⇒B=15°
Substitute the value of B in eq. (1) to get,
⇒A + 2B =60°
⇒A + 30°=60°
⇒A =60°-30°
⇒A =30°

Hence the values of A and B are A = 30°, B = 15°


Question 37.

If A and B ae acute angles such that tan A = , tan B = and tan (A + B) = , find A + B.


Answer:



Question 38.

In , right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine .


Answer:

Given: In ΔPQR, right-angled at Q, PQ = 3 cm and PR = 6 cm.

To find:

Solution:

Take right angle ΔPQR right angled at Q.

Since,



Here,





since,



So, sin R = sin 30°

⇒ R = 30°

Now, in ΔPQR

As sum of all angles of a triangle is 180°.

∠P = 180° - ( 90° + 30° )

∠P = 180° - 120°

∠P = 60°

Hence the value of ∠R is 30° and ∠P is 60°.


Exercise 5.3
Question 1.

Evaluate the following:

(i) (ii)

(iii) (iv)

(v)


Answer:

Use:



(i)

(ii)


(iii)


(iv)


(v)


Question 2.

Evaluate the following:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii) cosec 31° - sec 59°

(viii)

(ix)

(x)

(xi)


Answer:

(i)


(ii)



(iii)



(iv)



(v)



(vi)



(vii)



(viii)



(ix)



(x)



(xi)




Question 3.

Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)


Answer:

Use the formula:






(i)



(ii)



(iii)



(iv)



(v)



(vi)



(vii)



Question 4.

Express in terms of angles between 0° and 30°.


Answer:

Given :
To find : Expression in terms of angles between 0° and 30°.
Solution :
Use the values:

Solve,


Question 5.

If sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A.


Answer:



Question 6.

If A, B, C, are the interior angles of a triangle ABC, prove that

(i)

(ii)


Answer:

(i) Since, A, B, C, are the interior angles of a triangle ABC.

Therefore,



Hence proved.


(ii)



Hence proved.



Question 7.

Prove that:

(i)

(ii)

(iii)

(iv)


Answer:

(i)

we know,
tan(90 - A) = cot A
and cotA tanA = 1

By using above concepts, we can solve the question as:

Consider LHS,

tan20°tan35°tan45°tan55°tan70°=tan(90°-70°)tan(90°-55°)tan45°tan55°tan70°

⇒ tan20°tan35°tan45°tan55°tan70°=cot70°cot55°tan45°tan55°tan70°

⇒ tan20°tan35°tan45°tan55°tan70°=(cot70°tan70°)(cot55°tan55°)tan45°

Since tan45°=1,

⇒ tan20°tan35°tan45°tan55°tan70°=1×1×1

Which is equal to RHS.

Hence Proved


(ii)

we know,
sec(90 - A) = cosec A
and sinA.cosecA = 1

By using above concepts, we can solve the question as


Proved

(iii)

we know,
sin(90 - A) = cos A and
cosec(90 - A) = sec A, By using this information we can solve our question as


Proved

(iv)

we know,
sin(90 - A) = cos A and
cosec(90 - A) = sec A, By using this information we can solve our question as

Proved


Question 8.

Prove the following:

(i)

(ii)

(iii)

(iv)

(v)


Answer:

In the given parts use:

(i)


solve LHS,


Which is equal to RHS.


(ii)


solve LHS,
Use:

Solve,

Which is equal to RHS.

(iii)

solve LHS,
Use:


Solve,

Which is equal to RHS.

(iv)

solve LHS,
Use:

Which is equal to RHS.

(v)
solve LHS,

Which is equal to RHS.

Question 9.

Evaluate:
(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)


Answer:

(i)



(ii)


(iii)


(iv)



(v)



(vi)



(vii)



(viii)



(ix)



(x)



Question 10.

In where are acute angles, find the degree measure of .


Answer:



Question 11.

If A, B, C are the interior angles of a , show that:

(i) (ii)


Answer:

(i) Since, A, B, C are the interior angles of a



(ii)




Question 12.

If are acute angles, find the degree measure of satisfying


Answer:



Question 13.

If is a positive acute angle such that , find the value of .


Answer:



Question 14.

If , where and are acute angles, find the value of .


Answer:

Given:, where and are acute angles.
To find: The value of .
Solution:
since,

So,


Question 15.

If , where and are acute angles, find the value of .


Answer:



Question 16.

If , where is an acute angle, find the value of A.


Answer:



Question 17.

If , where is an acute angle, find the value of A.


Answer:




Cce - Formative Assessment
Question 1.

Write the maximum and minimum values of sin θ.


Answer:

With the help of Minimum-Maximum Value Table we can find the Value of sin θ


Therefore,


Minimum Value of sin θ = - 1 and


Maximum Value of sin θ = 1



Question 2.

If θ is an acute angle such that cos θ = 3/5, then =
A.

B.

C.

D.


Answer:

Given,


cos θ = 3/5


In ∆ ABC,



AC2 = AB2 + BC2


(5)2 = AB2 + (3)2


25 = AB2 + 9


25 – 9 = AB2


16 = AB2


4 = AB


Therefore,


AB = 4


As,


sin θ = AB/AC = 4/5


tan θ = AB/BC = 4/3


Now,







Question 3.

Write the maximum and minimum values of cos θ.


Answer:

With the help of Minimum-Maximum Value Table we can find the Value of cos θ


Therefore,


Minimum Value of cos θ = - 1 and


Maximum Value of cos θ = 1



Question 4.

If tan θ = a/b then is equal to
A.

B.

C.

D.


Answer:

Given,


tan θ = a/b


In ∆ ABC,


AC2 = AB2 + BC2


AC2 = a2 + b2



Therefore,




Now,




Question 5.

What is the maximum value of ?


Answer:

As we know,



And,


Maximum value of cos θ = 1


So,


The maximum value of 1/sec θ is 1



Question 6.

If 5 tan θ – 4 = 0, then the value of is
A. 5/3

B. 5/6

C. 0

D. 1/6


Answer:

Given,


5 tan θ – 4 = 0


So,


5 tan θ = 4


tan θ = 4/5


In ∆ ABC,


AC2 = AB2 + BC2


AC2 = (4)2 + (5)2


AC2 = 16 + 25


AC2 = 41


AC = √41


Therefore,


sin θ = AB/AC = 4/√41


cos θ = BC/AC = 5/√41


Now,



Question 7.

What is the maximum value of ?


Answer:

As we know,



And,


Maximum value of sin θ = 1


So,


The maximum value of 1/cosec θ is 1.



Question 8.

If 16 cot x = 12, then equals
A. 1/7

B. 3/7

C. 2/7

D. 0


Answer:

Given:16 cot x = 12

To find: The value of .

Solution:

cot x = 12/16

cot x = 3/4

Also cotθ = base/perpendicular

So we now construct a right triangle ABC, right angled at B such that

∠BAC = θ, Base = 3 and perpendicular = 4

In ∆ ABC,



AC2 = AB2 + BC2


AC2 = (3)2 + (4)2


AC2 = 9 + 16 = 25


AC = 5

As we know sinθ = perpendicular / hypotenuse

cosθ = base / hypotenuse

Therefore,

sin x = AB/AC = 4/5

cos x = BC/AC = 3/5

Now,




Question 9.

If 8 tan x = 15, then sin x - cos x is equal to
A.

B.

C.

D.


Answer:

Given,


8 tan x = 15


So,


tan x = 15/8


In ∆ ABC,


AC2 = AB2 + BC2


AC2 = (15)2 + (8)2


AC2 = 225 + 64 = 289


AC = 17


Therefore,


sin x = AB/AC = 15/17


cos x = BC/AC = 8/17


Now,




Question 10.

If, find the value of


Answer:

Given,


tan θ = 4/5


As we know,





And,





Now,




Therefore,




Question 11.

If, then =
A. 5/7

B. 3/7

C. 1/12

D. 3/4


Answer:

Given,


tan θ = 1/√7


In ∆ ABC,


AC2 = AB2 + BC2


AC2 = (1)2 + (√7)2


AC2 = 8


AC = 2√2


Therefore,



Now,






Question 12.

If , find the value of


Answer:

Given,


cos θ = 2/3


We know,



So,





Therefore,




Question 13.

If tan θ = 3/4, then cos2 θ – sin2 θ =
A.

B. 1

C.

D.


Answer:

Given,


tan θ = 3/4


In ∆ ABC,


AC2 = AB2 + BC2


AC2 = (3)2 + (4)2


AC2 = 9 + 16 = 25


AC = 5


Therefore,


sin θ = p/h = 3/5 and


cos θ = b/h = 4/5


Now putting these values in the given equation we get,


cos2 θ – sin2 θ =





Question 14.

If 3cot θ = 4, find the value of


Answer:

Given,


3 cot θ = 4


So,


cot θ = 4/3


As we know,





And,





Now,




Question 15.

If θ is an acute angle such that tan2 θ = 8/7, then the value of is
A. 7/8

B. 8/7

C. 7/4

D. 64/49


Answer:

Given,


tan2 θ = 8/7


Now,







Question 16.

Given , what is the value of ?


Answer:

Given,


tan θ = 1/√5



In ∆ ABC,


AC2 = AB2 + BC2


AC2 = 12 + (√5)2


AC2 = 1 + 5 = 6


AC = √6


We have,


cosec θ = AC/AB = √6/1


sec θ = AC/BC = √6/√5


Now,







Question 17.

If 3cos θ = 5 sin θ, then the value of is
A.

B.

C.

D. None of these


Answer:

Given,


3 cos θ = 5 sin θ




In ∆ABC,


AC2 = AB2 + BC2


AC2 = (3)2 + (5)2


AC2 = 9 + 25 = 34


AC = √34


Therefore,


sin θ = 3/√34


cos θ = 5/√34


sec θ = √34/5


Now,







Question 18.

If, rite the value of


Answer:

Given,


cot θ = 1/√3



In ∆ABC,


AC2 = AB2 + BC2


AC2 = (√3)2 + 12


AC2 = 3 + 1 = 4


AC= 2


We get;


cos θ = BC/AC = 1/2


sin θ = AB/AC = √3/2


Now,






Question 19.

If tan2 45° - cos2 30° = x sin 45° cos 45°, then x =
A. 2

B. - 2

C. –1/2

D. 1/2


Answer:

Given,


tan2 45° - cos2 30° = x sin 45° cos 45° …….(i)


put the values in equation (i),






Question 20.

If tan A = 3/4 and A + B = 90°, then what is the value of cot B ?


Answer:

Given,


tan A = 3/4 and


A + b = 90°


So we have,


A = 90° - B


So,


tan A = tan (90° - B) = 3/4


∵ cot B = tan A


Therefore,


cot B = 3/4



Question 21.

The value of cos2 17° - sin2 73° is
A. 1

B.

C. 0

D. -1


Answer:

cos2 17° - sin2 73° = cos2 17° - sin2(90° -17°)


= cos217° - cos2 17° = 0


Question 22.

If A + B = 90° and cos B = 3/5, what is the value of sin A?


Answer:

Given,


cos B = 3/5 and


A + B = 90°


So we have,


B = 90° - A


So,


cos B = cos (90° - A) = 3/5


∵ cos B = sin A


Therefore,


sin A = 3/5



Question 23.

The value of is
A. 1/2

B. 1/√2

C. 1

D. 2


Answer:



Question 24.

Write the acute angle θ satisfying √3 sin θ = cos θ


Answer:

Given,


√3 sin θ = cos θ


sin θ / cos θ = 1/√3
tan θ = 1/ √3 …(the value of tan 30° is 1/√3)


Therefore,
tan θ = tan 30°
θ = 30°



Question 25.

If = tan260° – tan230° then
A. 1

B. - 1

C. 2

D. 0


Answer:

Given,






8x = 8


x = 8/8 = 1


So, the value of x = 1


Question 26.

Write the value of cos 1° cos 2° cos 3°…. cos 179° cos 180°.


Answer:

cos 1° cos 2° cos 3°…. cos 179° cos 180°
= cos 1° × cos 2° × cos 3° × .....× cos 90° × ..... × cos 179°


As we know,


cos 90° = 0


So,
= cos 1° × cos 2° × cos 3° × .....× 0 × ..... × cos 179°
= 0


As, cos 90° has the value 0 that’s why the whole answer will be zero.



Question 27.

If A and B are complementary angles, then
A. sin A = sin B

B. cos A = cos B

C. tan A = tan B

D. sec A = cosec B


Answer:

Given,


A + B = 90°


B = 90° - A


sin B = sin (90° - A)


sin B = cos A


Taking the reciprocal,


cosec B = sec A


Or


sec A = cosec B


Question 28.

Write the value of tan 10° tan 15° tan 75° tan 80°.


Answer:

tan 10° × tan 15° × tan 75° × tan 80°


= tan 10 × tan 15 × tan(90-75) × tan (90-80)
= tan10 × tan15 × cot 15 × cot10
As we know,


tan θ × cot θ = 1
So,
tan 10 × cot 10 × tan 15 × cot 15
= 1



Question 29.

If x sin (90° - 0) cot (90° - θ) = cos (90° - θ), then x =?
A. 0

B. 1

C. - 1

D. 2


Answer:

Given: x sin (90° - 0) cot (90° - θ) = cos (90° - θ)

To find: The value of x.

Solution:

x sin (90° - 0) cot (90° - θ) = cos (90° - θ)

Since,

sin (90° - θ)= cos θ
cot (90° - θ) = tan θ

⇒ x cos θ.tan θ = sin θ

We know ...... (1)


Put this value in (1)



⇒ x = 1


Hence, the value is x = 1


Question 30.

If A + B = 90° and tan A = 3/4, what is cot B?


Answer:

Given,


tan A = 3/4


A + B = 90°
B = 90 – A


So,
cot B = cot (90-A)
cot B = tan A


Therefore,
cot B = 3/4



Question 31.

If tan A = 5/12, find the value of (sin A + cos A) sec A.


Answer:

Given,


tan A = 5/12


We get,



Now,


(sin A + cos A) sec A = (sin A + cos A)× 1/cos A



= tan A + 1



Therefore,


cot A = 17/12



Question 32.

If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
A. 1

B. √3

C. 1/2

D. 1/√2


Answer:

Given,


x tan 45° cos 60° = sin 60° cot 60°


(x)×(1)× 1/2 = √3/2 × 1/√3


x/2 = 1/2


x = 2/2 = 1


So the value of x is 1.


Question 33.

If angles A, B, C of a ΔABC form an increasing AP, then sin B =
A. 1/2

B. √3/2

C. 1

D. 1/√2


Answer:

Let suppose A, B and C are the angles of a triangle ABC,



In ∆ABC,


∠ A = (a – d)


∠ B = a


∠ C = a + d


Now, form an increasing A.P


As we know Sum of all the angle of a triangle is 180°,


Therefore,


∠A + ∠B + ∠C = 180°


(a – d) + a + (a + d) = 180°


3a = 180°


a = 180/3 = 60°


From the table,


sin B = sin A = sin 60°


= √3/2


Question 34.

If θ is an acute angle such that sec2θ = 3, then the value of is
A. 4/7

B. 3/7

C. 2/7

D. 1/7


Answer:

Given,


Sec2θ = 3


So,


Sec θ = √3 = h/b = k


Therefore,


h = √3k, b = k


In ∆ABC,



h2 = p2 + b2


(√3k)2 = p2 + (k)2


3k2 = p2 + k2


3k2 – k2 = p2


2k2 = p2


√2 K = p


We know,


tan θ = p/b = √2k/k = √2


cosec θ = h/p = √3k/√2k = √3/√2


Put these value in,





Question 35.

The value of tan 1° tan 2° tan 3° ……tan 89° is
A. 1

B. -1

C. 0

D. None of these


Answer:

tan 1° × tan 2° × tan 3° × ………. × tan 89°


As we know tan (90 – θ) = cot θ


So here we get,


tan (90 – 89) × tan (90 - 88) × tan (90 - 87) × ……….× tan 87 × tan 88 × tan 89°


cot 89° × cot 88° × cot 87°…………….. tan 45°× tan 46° …………….× tan 87°× tan 88°× tan 89°


∵ cot θ = 1/tan θ


Therefore,


(cot 89° × tan89°)(cot 88° × tan88°)(cot 87° × tan87°)…… (cot 46° × tan46°)(tan 45°)



= tan 45°


= 1


Question 36.

The value of cos 1° cos 2° cos 3°…… cos 180° is
A. 1

B. 0

C. -1

D. None of these


Answer:

Given,


cos 1° cos 2° cos 3° ………………..cos 180°


cos 1° × cos 2° × cos 3° …… cos 89° × cos 90° × cos 91° ……….cos 180°


As we know from the table,


cos 90° = 0


Therefore,


cos 1° × cos 2° × cos 3° …… cos 89° × 0 × cos 91° ……….cos 180°


= 0


Question 37.

The value of tan 10° tan 15° tan 75o tan 80. is
A. - 1

B. 0

C. 1

D. None of these


Answer:

Given,


tan 10° tan 15° tan 75o tan 80°


As we know,


tan (90 – θ) = than θ


Therefore,


⇒ tan (90°-80°) tan (90°-75°) tan 75o tan 80°


⇒ cot 80° cot 75° tan 75° tan 80°


⇒ (cot 80° tan 80°) (cot 75° tan 75°)……… [ cot θ = 1/tanθ ]



⇒ (1)(1) = 1


Question 38.

The value of is
A. 1

B. - 1

C. 2

D. - 2


Answer:

Given,


…….. (i)


∵ cos (90 – θ) = sin θ cos (90 – θ) = cos θ


sec (90 – θ) = cosec θ cot (90 – θ) = tan θ


cosec (90 – θ) = sec θ tan (90 – θ) = cot θ


Putting these values in (i),


We get,



∵ cosec θ = 1/sin θ and


sec θ = 1/cos θ



⇒ 1 + 1 = 2


Question 39.

If θ and 2θ – 45° are acute angles such that sin θ = cos (2θ – 45°), then tan θ is equal to
A. 1

B. - 1

C. √3

D. 1/√3


Answer:

Given,


θ and 2θ – 45° are acute angle,


sin θ = cos (2θ – 45)………….. (i)


[∵ cos (90 – θ) = sin θ]


Putting these value in equation (i),


Cos (90 – θ) = cos (2θ – 45°)


90 - θ = 2 θ – 45°


90 + 45 = 3 θ


3 θ = 135


θ = 135/3 = 45


tan θ = tan 45° = 1


Question 40.

If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ – √3 tan 4θ is equal to
A. 1

B. 0

C. - 1

D. 1 + √3


Answer:

Given,


5θ and 4 θ are acute angles,


Therefore,


5θ + 4θ = 90°


9θ = 90°


θ = 90/9 = 10°


Then value of-


2 sin 3θ - √3 tan 3 θ


Putting value of θ = 10°,


We get,


⇒ 2 sin 3(10) - √3 tan 3(10)


⇒ 2 sin 30° - √3 tan 30° [∵ sin 30° = 1/2 and tan 30° = 1/√3]


⇒ 2× 1/2 - √3 x


⇒ 1 – 1 = 0


Question 41.

If A + B = 90°, then is equal to
A. cot2A

B. cot2 B

C. –tan2A

D. – cot2 A


Answer:

Given,


A + B = 90°


B = 90° - A


Putting this Value in the given equation we get,




∵ tan (90 – A) = Cot A sin(90 – A) = cos A


cot (90 – A) = tan A


sec (90 – A) = cosec A



[∵ cot A = 1/tan A and cosec A = 1/sin A]



⇒ 1 + tan2 A – 1


∵ A + B = 90°


A = 90 – B


So,


⇒ tan2(90 – B)


⇒ cot2B


Question 42.

is equal to
A. sin 60°

B. cos 60°

C. tan 60°

D. sin 30°


Answer:

Given,








[∵ sin 60° = √3/2]



Question 43.

is equal to
A. tan 90°

B. 1

C. sin 45°

D. sin 0°


Answer:

Given,



∵ tan 45 = 1


Put this value,


We get;



sin 0°


Since sin 0° = 0


Question 44.

sin 2A = 2 sin A is true when A =
A. 0°

B. 30°

C. 45°

D. 60°


Answer:

Sin 2 A = 2 sin A


[∵ 2A = 2 sin A. Cos A]


⇒ 2 sin A . cos A = 2 sin A


⇒ cos A = 1 = cos 0°


⇒ A = 0°


Question 45.

is equal to
A. cos 60°

B. sin 60°

C. tan 60°

D. sin 30°


Answer:







tan 60° [∵ tan 60° = √3]


Question 46.

If A, B and C are interior angles of a triangle ABC, then =.
A. sin A/2

B. cos A/2

C. –sin A/2

D. -cos A/2


Answer:

Given,


A, B and C are the interior angles of ∆ ABC,


Therefore,


A + B + C = 180°


B + C = 180° - A




Now put this value in the given equation we get,



[∵ sin (90 – θ) = cos θ]


Question 47.

If cos θ = 2/3 then 2 sec2θ + 2tan2θ – 4 is equal to
A. 1

B. 0

C. 3

D. 4


Answer:

Given,


cos θ = 2/3 = b/h = k


2sec2 θ + 2 tan2θ – 7


b = 2k, h = 3k



In ∆ABC,


h2 = p2 + b2


⇒ (3k)2 = p2 + (2k)2


⇒ 9k2 = p2 + 4k2


⇒ p2 = 9k2 – 4k2


⇒ p2 = 5k2


⇒ p = √5k


Then,


Sec θ = h/b = 3k/2k = 3/2 and


Tan θ = p/b = √5k/2k = √5/2


⇒ 2 sec2 θ + 2 tan2 θ – 7






Question 48.

tan 5° × tan 30° × 4 tan 85° is equal to
A. 4/√3

B. 4√3

C. 1

D. 4


Answer:

⇒ tan 5° x tan 30° x 4 tan 85°


As,


tan (90 – θ) = cot θ


Therefore,


⇒ tan (90 – 85) x tan 30° x 4 tan 85°


⇒ cot 85° × tan 85° × 4 × tan 30°


⇒ 1/tan 85 × tan 85° × 4 × tan 30°


As we know,


tan 30° = 1/√3


⇒ 4 × tan 30°


⇒ 4 × (1/√3) = 4/√3


Question 49.

The value of + cot1° cot 2° cot 3°.... cot 90°, is
A. - 2

B. 2

C. 1

D. 0


Answer:

Given,




As we know,


Cot 90° = 0


Therefore,



1 + 0 = 1


Question 50.

In Fig. 5.47, the value of cos ϕ is


A. 5/4

B. 5/3

C. 3/5

D. 4/5


Answer:

As we know that sum of the angles of the straight line is 180°,


Therefore,


∠ θ + ∠90 + ∠ϕ = 180


∠ θ + ∠ϕ = 90


In ∆ABC,


sin θ = 4/5 = p/h


Putting θ = 90 - ϕ


We get,


sin (90 - ϕ) = 4/5


As,


Sin (90 - ϕ) = cos ϕ


cos ϕ = 4/5


Question 51.

In Fig. 5.48, AD = 4 cm BD = 3 cm and CB = 12 cm, find cot θ.
A.

B.

C.

D.




Answer:

Given,


AD = 4cm


BD = 3 cm


CB = 12 cm


In ∆ABC,



AB2 = AD2 + BD2


AB2 = 42 + 32


AB = √16 + 9 = 5 cm


Then,


cot θ = CB/AB = 12/5