Prove the following trigonometric identities:
Prove the following trigonometric identities:
Consider,
(1+cot2A)sin2A
As we know
1+cot2A = cosec2A
Putting the values we get,
(cosec2A)sin2A
As we know,
cosec A = 1/sinA
So,
hence proved
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
so,
(secθ + cosθ ) (secθ - cosθ) = sec2θ - cos2θ ...... (1)
We know,
sec2θ = tan2θ + 1
sin2θ + cos2θ = 1
Use the identities in the eq. (1)
(secθ + cosθ ) (secθ - cosθ) = sec2θ - cos2θ
= (tan2θ + 1) - (1 - sin2θ)
= tan2θ + 1 - 1 + sin2θ
= tan2θ + sin2θ
Hence proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
=1
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
= RHS
Hence Proved.
Prove the following trigonometric identities:
tan6θ + 3tan2θsec2θ + 1
= (sec2θ - 1)3 + 3(sec2θ - 1)sec2θ + 1 [As, tan2θ = sec2θ - 1]
= (sec6θ - 1 - 3sec4θ + 3sec2θ) + (3sec4θ - 3sec2θ) + 1 [(a + b)3 = a3 - b3 - 3a2b + 3ab2]
= sec6θ
= LHS
Hence Proved.
Prove the following trigonometric identities:
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence proved
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
To Prove:
Dividing the numerator and denominator by cosθ, we get,
Now, we know that,
sec2θ - tan2θ = 1
Therefore, replacing 1 by sec2θ - tan2θ in the numerator only, we get,
As we know,
a2 - b2 = (a-b)(a+b)
= secθ + tanθ
Now, multiplying and dividing by secθ - tanθ, we get,
As we know,
sec2θ - tan2θ = 1
= R.H.S
Hence, proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
To prove:
Proof:
Consider LHS,
Use the formula:
secθ = 1/cos θ and tanθ=sinθ/cosθ
Do rationalization,
Use the formula cos2θ + sin2θ = 1
= - tan A
Consider RHS,
Use the formula:
secθ = 1/cos θ and tanθ=sinθ/cosθ
Do rationalization,
Use the formula cos2θ + sin2θ = 1
= - tan A
LHS = RHS
Hence proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
To prove:
Use the formula
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
If prove that
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Therefore, LHS = RHS
Hence Proved.
Prove the following trigonometric identities:
To prove:
Proof:
Consider LHS,
(secA-cosecA)(1+tanA+cotA)
We know,
cosecA=1/sinA,
secA=1/cosA,
tanA=sinA/cosA,
cotA=cosA/sinA
So,
Using the formula a3 - b3 = (a-b) (a2+b2+ab) we get,
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
From (1) and (2) we get
LHS = RHS
Hence Proved.
Prove the following trigonometric identities:
To Prove:
Proof:
Consider the LHS,
= sinA - cosA+ cotA sinA - cotA cosA + tanA sinA - tanA cosA
Use the formula:
We know:
So,
Again use the formula:
So,
Use the formula:
Therefore,
Hence Proved.
Prove the following trigonometric identities:
sin2A cos2B - cos2A sin2B= sin2A(1 – sin2B) – (1 – sin2A)sin2B
= sin2A – sin2A sin2B – sin2B + sin2A sin2B
= sin2A – sin2B
= RHS
Hence Proved
Prove the following trigonometric identities:
Use the formula
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
Prove the following trigonometric identities:
Hence Proved.
If and prove that
Hence Proved.
and , prove that .
Hence Proved.
If cosecθ - sinθ = a3, secθ - cosθ = b3, prove that a2b2(a2 + b2).
From (1) and (2), we get
Hence Proved.
If , , prove that
.
Hence Proved.
If , prove that .
If , prove that .
Hence Proved.
If and , prove that
Hence Proved.
If and , prove that .
Hence Proved.
If , prove that
Hence Proved.
Prove that:
(i)
(ii)
(iii)
(iv)
(i)
Hence Proved.
(ii)
Hence Proved.
(iii)
Hence Proved.
(iv)
Hence Proved.
If , prove that
Hence Proved.
Given that:
Show that one of the values of each member of this equality is sin sinsin
Hence Proved.
If prove that
Hence Proved.
If , and , show that
Hence Proved.
If , find all other trigonometric ratios of angle .
Hence Proved.
If , find all other trigonometric ratios of angle
If , find the value of
If , find the value of
If , find the value of
If , find the value of
Now,
If , find the value of
Now,
If , find the value of
Now,
If , find the value of
If , find the value of
If , find the value of
If, find .
If sec θ + tan θ = x, then sec θ =
A.
B.
C.
D.
Given: sec θ + tan θ = x ……………(i)
To find: sec θ
We know that 1 + tan2 θ = sec2 θ
⇒ sec2 θ – tan2 θ = 1
∵ a2 – b2 = (a – b) (a + b)
∴ sec2 θ – tan2 θ = (sec θ – tan θ) (sec θ + tan θ) = 1
⇒ From (i), we have
⇒ (sec θ – tan θ) x = 1
…………………(ii)
Adding (i) and (ii), we get
Define an identity.
An equation that is true for all values of the variables involved is said to be an identity. For example:
a2 – b2 = (a – b) (a + b)
sin2 θ + cos2 θ = 1
If sec θ + tan θ = x, then tan θ =
A.
B.
C.
D.
Given: sec θ + tan θ = x ……………(i)
To find: tan θ
We know that 1 + tan2 θ = sec2 θ
⇒ sec2 θ – tan2 θ = 1
∵ a2 – b2 = (a – b) (a + b)
∴ sec2 θ – tan2 θ = (sec θ – tan θ) (sec θ + tan θ) = 1
⇒ From (i), we have
⇒ (sec θ – tan θ) x = 1
…………………(ii)
Subtracting (ii) from (i), we get
What is the value of (1 – cos2θ) cosec2θ?
To find: (1 – cos2 θ) cosec2 θ
∵
∴
…………(i)
∵ sin2 θ + cos2 θ = 1
∴ sin2 θ = 1 – cos2 θ
⇒ from (i), we have
What is the value of (1 + cot2θ) sin2θ?
To find: (1 + cot2θ) sin2θ
∵ 1 + cot2 θ = cosec2 θ
∴ (1 + cot2θ) sin2θ = cosec2 θ sin2 θ
Also,
is equal to
A. sec θ + tan θ
B. sec θ − tan θ
C. sec2θ + tan2θ
D. sec2θ − tan2θ
Note: Since all the options involve the trigonometric ratios sec θ and tan θ, so we divide the whole term (numerator as well as denominator) by cos θ.
To find:
Consider
Dividing numerator and denominator by cos θ, we get
Rationalizing the term by multiplying it by ,
Now, as 1 + tan2 θ = sec2 θ
⇒ sec2 θ – tan2 θ = 1
To find:
∵ 1 + tan2 θ = sec2 θ
∴
Also, we know that
⇒
⇒
Also,
∵ sin2 θ + cos2 θ = 1
∴
The value of is
A. cot θ − cosec θ
B. cosec θ + cot θ
C. cosec2θ + cot2θ
D. (cot θ + cosec θ)2
Note: Since all the options involve the trigonometric ratios cosec θ and cot θ, so we divide the whole term (numerator as well as denominator) by sin θ.
To find:
Consider
Dividing numerator and denominator by sin θ, we get
Rationalizing the term by multiplying it by ,
Now, as 1 + cot2 θ = cosec2 θ
⇒ cosec2 θ – cot2 θ = 1
If sec θ + tanθ = x, write the value of sec θ − tan θ in terms of x.
Given: sec θ + tan θ = x ……………(i)
To find: sec θ – tan θ
We know that 1 + tan2 θ = sec2 θ
⇒ 1 = sec2 θ – tan2 θ
Now, ∵ a2 – b2 = (a – b) (a + b)
⇒ 1 = sec2 θ – tan2 θ = (sec θ – tan θ) (sec θ + tan θ)
⇒ From (i), we have
1 = (sec θ – tan θ) x
sec4 A − sec2 A is equal to
A. tan2 A − tan4 A
B. tan4 A − tan2 A
C. tan4 A + tan2 A
D. tan2 A + tan4 A
Note: Since all the options involve the trigonometric ratio tan θ, so we use the identity 1 + tan2 θ = sec2 θ.
To find: sec4 A – sec2 A
Consider sec4 A – sec2 A = (sec2 A)2 – sec2 A
Now, as sec2 A = 1 + tan2 A
⇒ sec4 A – sec2 A = (sec2 A)2 – sec2 A
= (1 + tan2 A)2 – (1 + tan2 A)
= 1 + tan4 A + 2 tan2 A – 1 – tan2 A
= tan4 A + tan2 A
cos4 A − sin4 A is equal to
A. 2 cos2 A + 1
B. 2 cos2 A − 1
C. 2 sin2 A − 1
D. 2 sin2 A + 1
To find: cos4 A – sin4 A
Consider cos4 A – sin4 A = (cos2 A)2 – (sin2 A)2
∵ a2 – b2 = (a – b) (a + b)
∴ cos4 A – sin4 A = (cos2 A)2 – (sin2 A)2
= (cos2 A – sin2 A) (cos2 A + sin2 A)
= (cos2 A – sin2 A) [∵ cos2 A + sin2 A = 1]
= cos2 A – (1 – cos2 A) [∵ sin2A = 1 – cos2A]
= cos2 A – 1 + cos2 A = 2 cos2 A – 1
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Given: cosec θ – cot θ = α ………………(i)
To find: cosec θ + cot θ
We know that 1 + cot2 θ = cosec2 θ
⇒ 1 = cosec2 θ – cot2 θ
Now, ∵ a2 – b2 = (a – b) (a + b)
⇒ 1 = cosec2 θ – cot2 θ = (cosec θ – cot θ) (cosec θ + cot θ)
⇒ From (i), we have
1 = α (cosec θ + cot θ)
Write the value of cosec2 (90° − θ) − tan2θ.
To find: cosec2 (90° − θ) − tan2θ
∵ cosec (90° – θ) = sec θ
∴ cosec2 (90° – θ) = sec2 θ
⇒ cosec2 (90° θ) − tan2 θ = sec2 θ – tan2 θ
Now, ∵ 1 + tan2 θ = sec2 θ
∴ cosec2 (90° − θ) − tan2 θ = sec2 θ – tan2 θ
= 1 + tan2 θ – tan2 θ = 1
is equal to
A.
B.
C.
D.
To find:
Consider
Rationalizing the above fraction by (1 – cos θ),
[∵ (a – b) (a + b) = a2 – b2]
∵ sin2 θ + cos2 θ = 1
⇒ sin2 θ = 1 – cos2 θ
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
To find: sin A cos (90° − A) + cos A sin (90° − A)
∵ cos (90° – A) = sin A and sin (90° – A) = cos A ……………(i)
∴ sin A cos (90° − A) + cos A sin (90° − A)
= sin A sin A + cos A cos A [Using (i)]
= sin2 A + cos2 A
Now, ∵ sin2 θ + cos2 θ = 1
∴ sin A cos (90° − A) + cos A sin (90° − A)
= sin2 A + cos2 A = 1
is equal to
A. 0
B. 1
C. sin θ + cos θ
D. sin θ − cos θ
Given:
To find:The value of
Solution:
Use:
So,
Using the identity,
a2 – b2 = (a – b) (a + b)
Write the value of .
To find:
∵
Also, we know that 1 + cot2 θ = cosec2 θ
⇒ cot2 θ – cosec2 θ = – 1
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
A. 1
B. 2
C. 4
D. 0
To find: (1 + cot θ − cosec θ) (1 + tan θ + sec θ)
Consider (1 + cot θ − cosec θ) (1 + tan θ + sec θ)
[∵ (a – b) (a + b) = a2 – b2]
[∵ sin2 θ + cos2 θ = 1]
is equal to
A. 2 tan θ
B. 2 sec θ
C. 2 cosec θ
D. 2 tan θ sec θ
To find:
Consider
∴
[∵ sin2 θ = 1 – cos2 θ]
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2 ?
Given: x = a sin θ and y = b cos θ
⇒ x2 = a2 sin2 θ and y2 = b2 cos2 θ ………(i)
To find: b2x2 + a2y2
Consider b2x2 + a2y2 = b2 a2 sin2 θ + a2 b2 cos2 θ
= a2 b2 (sin2 θ + cos2 θ)
= a2 b2 (1) [∵ sin2 θ + cos2 θ = 1]
= a2 b2
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal
A. 0
B. 1
C. −1
D. None of these
To find: (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
∵
∴ (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
Now, as sin2 θ + cos 2 θ = 1
⇒ sin2 θ = 1 – cos2 θ
And cos2 θ = 1 – sin2 θ
Hence the answer is 'B'
If , what is the value of cot θ + cosec θ?
Given:
To find: cot θ + cosec θ
∵ sin2 θ + cos2 θ = 1
∴ cos2 θ = 1 – sin2 θ
Now, as
Also,
What is the value of 9 cot2θ − 9 cosec2θ?
To find: 9 cot2 θ – 9 cosec2 θ
Consider 9 cot2 θ – 9 cosec2 θ = 9 (cot2 θ – cosec2 θ)
Now ∵ 1 + cot2 θ = cosec2 θ
⇒ cot2 θ – cosec2 θ = – 1
⇒ 9 cot2 θ – 9 cosec2 θ = 9 (cot2 θ – cosec2 θ) = 9 ( – 1) = – 9
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
A. a2b2
B. ab
C. a4b4
D. a2 + b2
Given: x = a sin θ and y = b cos θ
⇒ x2 = a2 sin2 θ and y2 = b2 cos2 θ …………………(i)
To find: b2x2 + a2y2
Consider b2x2 + a2y2 = b2 a2 sin2 θ + a2 b2 cos2 θ
= a2 b2 (sin2 θ + cos2 θ)
= a2 b2 (1) [∵ sin2 θ + cos2 θ = 1]
= a2 b2
What is the value of ?
To find:
∵
Now, as 1 + tan2 θ = sec2 θ
⇒ tan2 θ – sec2 θ = – 1
If x = a sec θ and y = b tan θ, then b2x2− a2y2 =
A. ab
B. a2− b2
C. a2 + b2
D. a2 b2
Given: x = a sec θ and y = b tan θ
⇒ x2 = a2 sec2 θ and y2 = b2 tan2 θ ……………………(i)
To find: b2x2 – a2y2
Consider b2x2 – a2y2 = b2 a2 sec2 θ – a2 b2 tan2 θ
= a2 b2 (sec2 θ – tan2 θ)
= a2 b2 (1) [∵ sec2 θ – tan2 θ = 1]
= a2 b2
is equal to
A. 0
B. 1
C. −1
D. 2
To find:
Consider
What is the value of ?
To find:
We know that 1 + tan2 θ = sec2 θ
And 1 + cot2 θ = cosec2 θ
⇒ tan2 θ – sec2 θ = – 1
And cot2 θ – cosec2 θ = – 1
2(sin6θ + cos6θ) − 3(sin4θ + cos4θ) is equal to
A. 0
B. 1
C. −1
D. None of these
To find: 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ)
First, we consider
sin6 θ + cos6 θ = (sin2 θ)3 + (cos2 θ)3
Now, as (a + b)3 = a3 + b3 + 3a2b + 3ab2
⇒ a3 + b3 = (a + b)3 – 3a2b – 3ab2
⇒ sin6 θ + cos6 θ
= (sin2 θ)3 + (cos2 θ)3
= (sin2 θ + cos2 θ)3 – 3 (sin2 θ)2 cos2 θ – 3 sin2 θ (cos2 θ)2
= 1 – 3 sin4 θ cos2 θ – 3 sin2 θ cos4 θ [∵ sin2 θ + cos2 θ = 1]
= 1 – 3 sin2 θ cos2 θ (sin2 θ + cos2 θ)
= 1 – 3 sin2 θ cos2 θ [∵ sin2 θ + cos2 θ = 1] ………(i)
Next, we consider
sin4 θ + cos4 θ = (sin2 θ)2 + (cos2 θ)2
Now, as (a + b)2 = a2 + b2 + 2ab
⇒ a2 + b2 = (a + b)2 – 2ab
⇒sin4 θ + cos4 θ
= (sin2 θ)2 + (cos2 θ)2
= (sin2 θ + cos2 θ)2 – 2 sin2 θ cos2 θ
= 1 – 2 sin2 θ cos2 θ [∵ sin2 θ + cos2 θ = 1] ………(ii)
Now, using (i) and (ii), we have
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ)
= 2(1 – 3 sin2 θ cos2 θ) – 3(1 – 2 sin2 θ cos2 θ)
= 2 – 6 sin2 θ cos2 θ – 3 + 6 sin2 θ cos2 θ
= 2 – 3 = – 1
What is the value of (1 + tan2θ) (1 − sin θ) (1 + sin θ)?
To find: (1 + tan2θ) (1 − sin θ) (1 + sin θ)
∵ (a – b) (a + b) = a2 – b2
∴ (1 + tan2θ) (1 − sin θ) (1 + sin θ)
= (1 + tan2 θ) (1 – sin2 θ)
Now, as sin2 θ + cos2 θ = 1
⇒ 1 – sin2 θ = cos2 θ ……………………(i)
Also, we know that 1 + tan2 θ = sec2 θ …………………(ii)
Using (i) and (ii), we have
(1 + tan2θ) (1 − sin θ) (1 + sin θ)
= (1 + tan2 θ) (1 – sin2 θ)
= sec2 θ cos2 θ
∵
⇒ (1 + tan2 θ) (1 − sin θ) (1 + sin θ)
= sec2 θ cos2 θ
=
If a cos θ + b sin θ and a sin θ − b cos θ = 3, then a2 + b2 =
A. 7
B. 12
C. 25
D. None of these
Given: a cos θ + b sin θ = 4
Squaring both sides, we get
(a cos θ + b sin θ)2 = 42
⇒ a2 cos2 θ + b2 sin2 θ + 2ab sin θ cos θ = 16 ………(i)
and a sin θ – b cos θ = 3
Squaring both sides, we get
(a sin θ – b cos θ)2 = 32
⇒ a2 sin2 θ + b2 cos2 θ – 2ab sin θ cos θ = 9 ………(ii)
To find: a2 + b2
Adding (i) and (ii), we get
a2 cos2 θ + b2 sin2 θ + 2ab sin θ cos θ
+ a2 sin2 θ + b2 cos2 θ – 2ab sin θ cos θ = 16 + 9
⇒ a2 (sin2 θ + cos2 θ) + b2 (sin2 θ + cos2 θ) = 25
⇒ a2 + b2 = 25 [∵ sin2 θ + cos2 θ = 1]
If , find the value of tan A + cot A.
Given:
To find: tan A + cot A
∵ sin2 A + cos2 A = 1
⇒ sin2 A = 1 – cos2 A
Now, as
And
If a cot θ + b cosec θ = p and b cot θ + a cosec θ = q, then p2− q2 =
A. a2− b2
B. b2− a2
C. a2 + b2
D. b − a
Given: a cot θ + b cosec θ = p
Squaring both sides, we get
(a cot θ + b cosec θ)2 = p2
⇒ a2 cot2 θ + b2 cosec2 θ + 2ab cot θ cosec θ = p2 ……(i)
and b cot θ + a cosec θ = q
Squaring both sides, we get
(b cot θ + a cosec θ)2 = q2
⇒ b2 cot2 θ + a2 cosec2 θ + 2ab cot θ cosec θ = q2 ……(ii)
To find: p2 – q2
Subtracting (ii) from (i), we get
a2 cot2 θ + b2 cosec2 θ + 2ab cot θ cosec θ – b2 cot2 θ – a2 cosec2 θ – 2ab cot θ cosec θ = p2 – q2
⇒ P2 – q2 = a2 (cot2 θ – cosec2 θ) + b2 (cosec2 θ – cot2 θ)
= a2 ( – 1) + b2 (1) [∵1 = cosec2 θ – cot2 θ]
= b2 – a2
If , then find the value of 2 cot2θ + 2.
Given:
To find: The value of 2 cot2 θ + 2.
Solution:∵
⇒ cosec2 θ = 32 = 9
Also, 1 + cot2 θ = cosec2 θ
⇒ cot2 θ = cosec2 θ – 1 = 9 – 1 = 8
⇒ 2 cot2 θ + 2 = 2 (8) + 2 = 16 + 2 = 18
Hence, the value of 2 cot2 θ + 2 is 18.
The value of sin2 29° + sin2 61° is
A. 1
B. 0
C. 2 sin2 29°
D. 2 cos2 61
To find: sin2 29° + sin261°
Consider sin2 29° + sin261°
∵ 29 = 90 – 61
∴ sin2 29° + sin261° = sin2 (90° – 61°) + sin2 61°
Now, as sin (90° – θ) = cos θ
⇒ sin2 29° + sin261° = sin2 (90° – 61°) + sin2 61°
= cos2 61° + sin2 61°
= 1 [sin2 θ + cos2 θ = 1]
If , then find the value of 9 tan2θ + 9.
Given:
To find: 9 tan2 θ + 9
∵
∴
Also, we know that 1 + tan2 θ = sec2 θ
If x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ, then
A. x2 + y2 + z2 = r2
B. x2 + y2− z2 = r2
C. x2− y2 + z2 = r2
D. z2 + y2− x2 = r2
Given: x = r sin θ cos ϕ, y = r sin θ sin φ and z = r cos θ,
Solution:
x = r sin θ cos ϕ
Squaring both sides, we get
x2 = r2 sin2 θ cos2ϕ ……….(i)
and y = r sin θ sin ϕ
Squaring both sides, we get⇒ y2 = r2 sin2 θ sin2ϕ ……….(ii)
z = r cos θ
Squaring both sides, we get
⇒ z2 = r2 cos2 θ ……….(iii)
Adding (i), (ii) and (iii), we get
x2 + y2 + z2 = r2 sin2 θ cos2ϕ + r2 sin2 θ sin2ϕ + r2 cos2 θ
= r2 (sin2 θ cos2ϕ + sin2 θ sin2ϕ + cos2 θ)
= r2 [sin2 θ (cos2ϕ + sin2ϕ) + cos2 θ]
∵ sin2 θ + cos2 θ = 1= r2 [sin2 θ + cos2 θ]
Again apply the identity sin2 θ + cos2 θ = 1= r2
Hence x2 + y2 + z2 = r2
If sec2θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Given: sec2θ (1 + sin θ) (1 − sin θ) = k
To find: k
Consider sec2θ (1 + sin θ) (1 − sin θ)
∵ (a – b) (a + b) = a2 – b2
∴ sec2θ (1 + sin θ) (1 − sin θ) = sec2 θ (1 – sin2 θ)
Now, as sin2 θ + cos2 θ = 1
⇒ cos2 θ = 1 – sin2 θ
⇒ sec2 θ (1 + sin θ) (1 − sin θ) = sec2 θ (1 – sin2 θ)
= sec2 θ cos2 θ
Now, ∵
⇒ sec2 θ (1 + sin θ) (1 − sin θ) = sec2 θ (1 – sin2 θ)
= sec2 θ cos2 θ
⇒ k = 1
If cosec2θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Given: cosec2θ (1 + cos θ) (1 − cos θ) = λ
To find: λ
Consider cosec2θ (1 + cos θ) (1 − cos θ)
∵ (a – b) (a + b) = a2 – b2
∴ cosec2θ (1 + cos θ) (1 − cos θ) = cosec2 θ (1 – cos2 θ)
Now, as sin2 θ + cos2 θ = 1
⇒ sin2 θ = 1 – cos2 θ
⇒ cosec2θ (1 + cos θ) (1 − cos θ) = cosec2 θ (1 – cos2 θ)
= cosec2 θ sin2 θ
Now, ∵
⇒ cosec2 θ (1 + cos θ) (1 − cos θ) = cosec2 θ (1 – cos2 θ)
= cosec2 θ sin2 θ
If sin θ + sin2 = 1, then cos2θ + cos4θ =
A. −1
B. 1
C. 0
D. None of these
Given: sin θ + sin2 θ = 1
⇒ sin θ = 1 – sin2 θ = cos2 θ [∵ sin2 θ + cos2 θ = 1]……(i)
⇒ Sin2 θ = (cos2 θ)2 = cos4 θ ……(ii)
To find: cos2 θ + cos4 θ
Consider cos2 θ + cos4 θ = sin θ + sin2 θ [Using (i) and (ii)]
= 1 [Given]
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
A. m2− n2
B. m2n2
C. n2− m2
D. m2 + n2
Given: a cos θ + b sin θ = m
Squaring both sides, we get
(a cos θ + b sin θ)2 = m2
⇒ a2 cos2 θ + b2 sin2 θ + 2ab cos θ sin θ = m2 ……(i)
And a sin θ – b cos θ = n
Squaring both sides, we get
(a sin θ – b cos θ)2 = n2
⇒ a2 sin2 θ + b2 cos2 θ – 2ab sin θ cos θ = n2 ……(ii)
To find: a2 + b2
Adding (i) and (ii), we get
a2 cos2 θ + b2 sin2 θ + 2ab cos θ sin θ + a2 sin2 θ + b2 cos2 θ – 2ab sin θ cos θ = m2 + n2
⇒ a2 (cos2 θ + sin2 θ) + b2 (sin2 θ + cos2 θ) = m2 + n2
⇒ a2 + b2 = m2 + n2 [∵ sin2 θ + cos2 θ = 1]
If sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) = λ, then find the value of λ.
Given: sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) = λ
To find: λ
We know that 1 + tan2 θ = sec2 θ
And 1 + cot2 θ = cosec2 θ
⇒ sin2θ cos2θ (1 + tan2θ) (1 + cot2θ)
= sin2 θ cos2 θ sec2 θ cosec2 θ
Now, ∵
And ∵
⇒ sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ)
= sin2 θ cos2 θ sec2 θ cosec2 θ
⇒ λ = 1
If 5x = sec θ and , find the value of .
Given: 5x = sec θ
………(i)
And
………(ii)
To find:
Consider [Using (i)]
[Using (ii)]
Now, as 1 + tan2 θ = sec2 θ
⇒ 1 = sec2 θ – tan2 θ
If cos A + cos2 A = 1, then sin2 A + sin4 A
A. −1
B. 0
C. 1
D. None of these
Given: cos A + cos2 A = 1
⇒ cos A = 1 – cos2 A = sin2 A [∵ sin2 A + cos2 A = 1]……(i)
Squaring both sides, we get
⇒ cos2 A = (sin2 A)2 = sin4 A ……(ii)
To find: sin2 A + sin4 A
Consider sin2 A + sin4 A = cos A + cos2 A [From (i) and (ii)]
= 1
If x = a sec θ cos φ, y = b sec θ sin φ and z = c tan θ, then
A.
B.
C.
D.
Given: x a sec θ cos ϕ
Squaring both sides, we get
x2 = a2 sec2 θ cos2ϕ
and y = b sec θ sin ϕ
Squaring both sides, we get
y2 = b2 sec2 θ sin2ϕ
And z = c tan θ
⇒ z2 = c2 tan2 θ
………(i)
To find:
Consider
= sec2 θ cos2ϕ + sec2 θ sin2ϕ
= sec2 θ (cos2ϕ + sin2ϕ)
= sec2 θ [∵ sin2ϕ + cos2ϕ = 1]
= 1 + tan2 θ [∵ 1 + tan2 θ = sec2 θ]
If cosec θ = 2x and , find the value of
Given: cosec θ = 2x
…………………(i)
And
…………………(ii)
To find:
Consider [Using (i)]
[Using (ii)]
Now, as 1 + cot2 θ = cosec2 θ
⇒ 1 = cosec2 θ – cot2 θ
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
A.
B.
C.
D. None of these
Given: a cos θ – b sin θ = c
To find: a sin θ + b cos θ
Consider a cos θ – b sin θ = c
Squaring both sides, we get
(a cos θ – b sin θ)2 = c2
∵ (a – b)2 = a2 + b2 – 2ab
∴ a cos θ – b sin θ = c
⇒ a2 cos2 θ + b2 sin2 θ – 2ab sinθ cos θ = c2 ……(i)
Now, ∵ sin2 θ + cos2 θ = 1
∴ sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ
⇒ From (i), we have
⇒ a2 (1 – sin2 θ) + b2 (1 – cos2 θ) – 2ab sin θ cos θ = c2
⇒ a2 – a2 sin2 θ + b2 – b2 cos2 θ – 2ab sin θ cos θ = c2
⇒ a2 + b2 – (a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ) = c2
⇒ – (a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ) = c2 – a2 – b2
⇒ a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ = a2 + b2 – c2
⇒ (a sin θ)2 + (b cos θ)2 + 2 (a sin θ) (b cos θ) = a2 + b2 – c2
⇒ (a sin θ + b cos θ)2 = a2 + b2 – c2
⇒
9 sec2 A − 9 tan2 A is equal to
A. 1
B. 9
C. 8
D. 0
To find: 9 sec2 A – 9 tan2 A
Consider 9 sec2 A – 9 tan2 A = 9 (sec2 A – tan2 A)
∵ 1 + tan2 A = sec2 A
∴ 9 sec2 A – 9 tan2 A = 9 (sec2 A – tan2 A)
= 9 (1 + tan2 A – tan2 A) = 9
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) =
A. 0
B. 1
C. 1
D. −1
To find: (1 + tan θ + sec θ) (1 + cot θ − cosec θ)
Consider (1 + tan θ + sec θ) (1 + cot θ − cosec θ)
[∵ (a – b) (a + b) = a2 – b2]
[∵ sin2 θ + cos2 θ = 1]
(sec A + tan A) (1 − sin A) =
A. sec A
B. sin A
C. cosec A
D. cos A
To find: (sec A + tan A) (1 − sin A)
Consider (sec A + tan A) (1 − sin A)
We know that
∵ (a + b) (a – b) = a2 – b2
∴
Also, sin2 A + cos2 A = 1 ⇒ 1 – sin2 A = cos2 A
is equal to
A. sec2 A
B. −1
C. cot2 A
D. tan2 A
To find:
Consider
∵ 1 + tan2 A = sec2 A and 1 + cot2 A = cosec2 A
∴