Buy BOOKS at Discounted Price

Trigonometric Identities

Class 10th Mathematics RD Sharma Solution
Exercise 6.1
  1. (1-cos^2a) cosec^2a = 1 Prove the following trigonometric identities:…
  2. (1+cot^2a) sin^2a = 1 Prove the following trigonometric identities:…
  3. tan^2theta cos^2theta = 1-cos^2theta Prove the following trigonometric…
  4. cosectheta root 1-cos^2theta = 1 Prove the following trigonometric identities:…
  5. (sec^2theta -1) (cosec^2theta -1) = 1 Prove the following trigonometric…
  6. tantheta + 1/tantheta = sectheta cosectheta Prove the following trigonometric…
  7. costheta /1-sintegrate heta = 1+sintegrate heta /costheta Prove the following…
  8. costheta /1+sintegrate heta = 1-sintegrate heta /costheta Prove the following…
  9. cos^2a + 1/1+cot^2a = 1 Prove the following trigonometric identities:…
  10. sin^2a + 1/1+tan^2a = 1 Prove the following trigonometric identities:…
  11. Prove the following trigonometric identities: root 1-costheta /1+costheta =…
  12. 1-costheta /sintegrate heta = sintegrate heta /1+costheta Prove the following…
  13. sintegrate heta /1-costheta = cosectheta +cottheta Prove the following…
  14. 1-sintegrate heta /1+sintegrate heta = (sectheta -tantheta)^2 Prove the…
  15. (cosectheta +sintegrate heta) (cosectheta -sintegrate heta) = cot^2theta…
  16. (1+cot^2theta) tantheta /sec^2theta = cottheta Prove the following…
  17. (sectheta +costheta) (sectheta -costheta) = tan^2theta +sin^2theta Prove the…
  18. seca (1-sina) (seca+tana) = 1 Prove the following trigonometric identities:…
  19. (coseca-sina) (seca-cosa) (tana+cota) = 1 Prove the following trigonometric…
  20. tan^2theta -sin^2theta = tan^2theta sin^2theta Prove the following…
  21. (1+tan^2theta) (1-sintegrate heta) (1+sintegrate heta) = 1 Prove the following…
  22. Prove the following trigonometric identities: sin^2acot^2a+cos^2atan^2a =1…
  23. cottheta -tantheta = 2cos^2theta -1/sintegrate heta costheta Prove the…
  24. tantheta -cottheta = 2sin^2theta -1/sintegrate heta costheta Prove the…
  25. cos^2theta /sintegrate heta -cosectheta +sintegrate heta = 0 Prove the…
  26. 1/1+sina + 1/1-sina = 2sec^2a Prove the following trigonometric identities:…
  27. 1+sintegrate heta /costheta + costheta /1+sintegrate heta = 2sectheta Prove the…
  28. (1+sintegrate heta)^2 + (1-sintegrate heta)^2/2cos^2theta = 1+sin^2theta…
  29. 1+tan^2theta /1+cot^2theta = (1-tantheta /1-cottheta)^2 = tan^2theta Prove the…
  30. 1+sectheta /sectheta = sin^2theta /1-costheta Prove the following trigonometric…
  31. tantheta /1-cottheta + cottheta /1-tantheta = 1+tantheta +cottheta Prove the…
  32. sec^6theta = tan^6theta +3tan^2theta sec^2theta +1 Prove the following…
  33. cosec^6theta = cot^6theta +3cot^2theta cosec^2theta +1 Prove the following…
  34. (1+tan^2theta) cottheta /costheta c^2theta = tantheta Prove the following…
  35. 1+cosa/sin^2a = 1/1-cosa Prove the following trigonometric identities:…
  36. seca-tana/seca+tana = cos^2a/(1+sina)^2 Prove the following trigonometric…
  37. 1+cosa/sina = sina/1-cosa Prove the following trigonometric identities:…
  38. root 1+sina/1-sina = seca+tana Prove the following trigonometric identities:…
  39. root 1-cosa/1+cosa + root 1+cosa/1-cosa = 2coseca Prove the following…
  40. (seca-tana)^2 = 1-sina/1+sina Prove the following trigonometric identities:…
  41. 1-cosa/1+cosa = (cota-costheta ca)^2 Prove the following trigonometric…
  42. 1/seca-1 + 1/seca+1 = 2cosecacota Prove the following trigonometric identities:…
  43. cosa/1-tana + sina/1-cota = sina+cosa Prove the following trigonometric…
  44. Prove the following trigonometric identities:
  45. (1+tan^2a) + (1 + 1/tan^2a) = 1/sin^2a-sin^4a Prove the following trigonometric…
  46. tan^2a/1+tan^2a + cot^2a/1+cot^2a = 1 Prove the following trigonometric…
  47. cota-cosa/cota+cosa = costheta ca-1/costheta ca+1 Prove the following…
  48. 1+costheta +sintegrate heta /1+costheta -sintegrate heta = 1+sintegrate heta…
  49. sintegrate heta -costheta +1/sintegrate heta +costheta -1 = 1/sectheta…
  50. costheta -sintegrate heta +1/costheta +sintegrate heta -1 = costheta c theta…
  51. 1/seca+tana - 1/cosa = 1/cosa - 1/seca-tana Prove the following trigonometric…
  52. tan^2a+cot^2a = sec^2acosec^2a-2 Prove the following trigonometric identities:…
  53. 1-tan^2a/cot^2a-1 = tan^2a Prove the following trigonometric identities:…
  54. 1 + cot^2theta /1+costheta c theta = costheta c theta Prove the following…
  55. costheta /cosectheta +1 + costheta /cosectheta -1 = 2tantheta Prove the…
  56. 1+costheta -sin^2theta /sintegrate heta (1+costheta) = cottheta Prove the…
  57. tan^3theta /1+tan^2theta + cot^3theta /1+cot^2theta = Prove the following…
  58. If t_n = sin^ntheta +cos^ntheta _r prove that t_3-t_5/t_1 = t_5-t_7/t_3…
  59. (tantheta + 1/costheta)^2 + (tantheta - 1/costheta)^2 = 2 (1+sin^2theta…
  60. (1/sec^2theta -cos^2theta + 1/cosec^2theta -sin^2theta) sin^2theta cos^2theta =…
  61. (1+sintegrate heta -costheta /1+sintegrate heta +costheta)^2 = 1-costheta…
  62. (seca+tana-1) (seca-tana+1) = 2tana Prove the following trigonometric…
  63. (1+cota-coseca) (1+tana+seca) = 2 Prove the following trigonometric identities:…
  64. (cosectheta -sectheta) (cottheta -tantheta) = (costheta c theta +sectheta)…
  65. (seca-costheta ca) (1+tana+cota) = Prove the following trigonometric…
  66. cosacostheta ca-sinaseca/cosa+sina Prove the following trigonometric…
  67. Prove the following trigonometric identities: sina/seca+tana-1 +
  68. tana/(1+tan^2a)^2 + cota/(1+cot^2a)^2 = Prove the following trigonometric…
  69. sec^4a (1-sin^4a) - 2tan^2a = 1 Prove the following trigonometric identities:…
  70. cot^2a (seca-1)/1+sina = sec^2a (1-sina/1+seca) Prove the following…
  71. (1+cota+tana) (sina-cosa) = seca/costheta c^2a - costheta ca/sec^2a = sinatana…
  72. sin^2acos^2b-cos^2asin^2b = sin^2a-sin^2b Prove the following trigonometric…
  73. cota+tanb/cotb+tana = cotatanb Prove the following trigonometric identities:…
  74. tana+tanb/cota+cotb = tanatanb Prove the following trigonometric identities:…
  75. cot^2acosec^2b-cot^2bcosec^2a = cot^2a-cot^2b Prove the following trigonometric…
  76. tan^2asec^2b-sec^2atan^2b = tan^2a-tan^2b Prove the following trigonometric…
  77. If x = asectheta +btantheta and y = atantheta + theta _1 prove that x^2 - y^2 =…
  78. x/3 costheta + y/b sintegrate heta = 1 and x/3 sintegrate heta - y/b costheta =…
  79. If cosec - sin = a^3 , sec - cos = b^3 ,prove that a^2b^2 (a^2 + b^2) = 1 .…
  80. If acos^3theta +3acostheta sin^2theta = m , asin^3theta + 3acos^2theta…
  81. If x = acos^3theta _1 y = bsin^3theta , prove that (x/3)^2/5 + (y/b)^2/3 = 1 .…
  82. If 3sintegrate heta +5costheta = 5 , prove that 5sintegrate heta -3costheta =…
  83. If acostheta +bsintegrate heta = m and asintegrate heta - bcostheta = n , prove…
  84. If costheta c theta +cottheta = m and cosectheta -cottheta = n , prove that mn…
  85. If cosa+cos^2a = 1 , prove that sin^2a+sin^4a = 1
  86. Prove that: (i) root sectheta -1/sectheta +1 + root sectheta +1/sectheta -1 =…
  87. If costheta +cos^2theta = 1 , prove that
  88. Given that: (1+cosalpha) (1+cosbeta) (1+cosgamma) = (1-cosalpha) (1-cosbeta)…
  89. If sintegrate heta +costheta = x prove that sin^6theta + cos^6theta = 4-3 (x^2…
  90. If x = asectheta cosphi y = bsectheta cosphi , and z = ctantheta , show that…
Exercise 6.2
  1. If costheta = 4/5 , find all other trigonometric ratios of angle theta .…
  2. If sintegrate heta = 1/root 2 , find all other trigonometric ratios of angle…
  3. If tantheta = 1/root 2 , find the value of cosec^2theta -sec^2theta…
  4. If tantheta = 3/4 , find the value of 1-costheta /1+costheta
  5. If tantheta = 12/5 , find the value of 1+sintegrate heta /1-sintegrate heta…
  6. If cottheta = 1/root 3 , find the value of 1-cos^2theta /2-sin^2theta…
  7. If coseca = root 2 , find the value of 2sin^2a+3cot^2a/4 (tan^2a-cos^2a)…
  8. If cottheta = root 3 , find the value of cosec^2theta +cot^2theta /cosec^2theta…
  9. If 3costheta = 1 , find the value of 6sin^2theta +tan^2theta /4costheta…
  10. If root 3 tantheta = 3sintegrate heta , find the value of sin^2theta…
  11. If cosectheta = 13/12 , find the value of 2sintegrate heta -3costheta…
  12. If sintegrate heta +costheta = root 2 cos (90^circle - theta) , find cottheta .…
Cce - Formative Assessment
  1. If sec θ + tan θ = x, then sec θ =A. x^2 + 1/x B. x^2 + 1/2x C. x^2 - 1/2x D. x^2 - 1/x…
  2. Define an identity.
  3. If sec θ + tan θ = x, then tan θ =A. x^2 + 1/x B. x^2 - 1/x C. x^2 + 1/2x D. x^2 - 1/2x…
  4. What is the value of (1 - cos^2 θ) cosec^2 θ?
  5. What is the value of (1 + cot^2 θ) sin^2 θ?
  6. root 1+sintegrate heta /1-sintegrate heta is equal toA. sec θ + tan θ B. sec θ − tan θ…
  7. What is the value of sin^2theta + 1/1+tan^2theta ?
  8. The value of root 1+costheta /1-costheta isA. cot θ − cosec θ B. cosec θ + cot θ C.…
  9. If sec θ + tanθ = x, write the value of sec θ − tan θ in terms of x.…
  10. sec^4 A − sec^2 A is equal toA. tan^2 A − tan^4 A B. tan^4 A − tan^2 A C. tan^4 A +…
  11. cos^4 A − sin^4 A is equal toA. 2 cos^2 A + 1 B. 2 cos^2 A − 1 C. 2 sin^2 A − 1 D. 2…
  12. If cosec θ − cot θ = α, write the value of cosec θ + cot α.
  13. Write the value of cosec^2 (90° − θ) − tan^2 θ.
  14. sintegrate heta /1+costheta is equal toA. 1+costheta /sintegrate heta B. 1-costheta…
  15. Write the value of sin A cos (90° − A) + cos A sin (90° − A).
  16. sintegrate heta /1-cottheta + costheta /1-tantheta is equal toA. 0 B. 1 C. sin θ + cos…
  17. Write the value of cot^2theta - 1/sin^2theta .
  18. The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) isA. 1 B. 2 C. 4 D. 0…
  19. tantheta /sectheta -1 + tantheta /sectheta +1 is equal toA. 2 tan θ B. 2 sec θ C. 2…
  20. If x = a sin θ and y = b cos θ, what is the value of b^2 x^2 + a^2 y^2 ?…
  21. (cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equalA. 0 B. 1 C. −1 D. None of…
  22. If sintegrate heta = 4/5 , what is the value of cot θ + cosec θ?
  23. What is the value of 9 cot^2 θ − 9 cosec^2 θ?
  24. If x = a cos θ and y = b sin θ, then b^2 x^2 + a^2 y^2 =A. a^2 b^2 B. ab C. a^4 b^4 D.…
  25. What is the value of 6tan^2theta - 6/cos^2theta ?
  26. If x = a sec θ and y = b tan θ, then b^2 x^2 − a^2 y^2 =A. ab B. a^2 − b^2 C. a^2 +…
  27. cottheta /cottheta -cot3theta + tantheta /tantheta -tan3theta is equal toA. 0 B. 1 C.…
  28. What is the value of tan^2theta -sec^2theta /cot^2theta -cosec^2theta ?…
  29. 2(sin^6 θ + cos^6 θ) − 3(sin^4 θ + cos^4 θ) is equal toA. 0 B. 1 C. −1 D. None of…
  30. What is the value of (1 + tan^2 θ) (1 − sin θ) (1 + sin θ)?
  31. If a cos θ + b sin θ and a sin θ − b cos θ = 3, then a^2 + b^2 =A. 7 B. 12 C. 25 D.…
  32. If cosa = 7/25 , find the value of tan A + cot A.
  33. If a cot θ + b cosec θ = p and b cot θ + a cosec θ = q, then p^2 − q^2 =A. a^2 − b^2…
  34. If sintegrate heta = 1/3 , then find the value of 2 cot^2 θ + 2.
  35. The value of sin^2 29° + sin^2 61° isA. 1 B. 0 C. 2 sin^2 29° D. 2 cos^2 61…
  36. If costheta = 3/4 , then find the value of 9 tan^2 θ + 9.
  37. If x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ, thenA. x^2 + y^2 + z^2 = r^2…
  38. If sec^2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.…
  39. If cosec^2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.…
  40. If sin θ + sin^2 = 1, then cos^2 θ + cos^4 θ =A. −1 B. 1 C. 0 D. None of these…
  41. If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a^2 + b^2 =A. m^2 − n^2 B.…
  42. If sin^2 θ cos^2 θ (1 + tan^2 θ) (1 + cot^2 θ) = λ, then find the value of λ.…
  43. If 5x = sec θ and 5/x = tantheta , find the value of 5 (x^2 - 1/x^2) .…
  44. If cos A + cos^2 A = 1, then sin^2 A + sin^4 AA. −1 B. 0 C. 1 D. None of these…
  45. If x = a sec θ cos φ, y = b sec θ sin φ and z = c tan θ, then x^2/a^2 + y^2/b^2 = A.…
  46. If cosec θ = 2x and cottheta = 2/x , find the value of 2 (x^2 - 1/x^2)…
  47. If a cos θ − b sin θ = c, then a sin θ + b cos θ =A. plus or minus root a^2 + b^2 +…
  48. 9 sec^2 A − 9 tan^2 A is equal toA. 1 B. 9 C. 8 D. 0
  49. (1 + tan θ + sec θ) (1 + cot θ − cosec θ) =A. 0 B. 1 C. 1 D. −1
  50. (sec A + tan A) (1 − sin A) =A. sec A B. sin A C. cosec A D. cos A…
  51. 1+tan^2a/1+cot^2a is equal toA. sec^2 A B. −1 C. cot^2 A D. tan^2 A…

Exercise 6.1
Question 1.

Prove the following trigonometric identities:



Answer:


Question 2.

Prove the following trigonometric identities:



Answer:

Consider,

(1+cot2A)sin2A

As we know

1+cot2A = cosec2A

Putting the values we get,

(cosec2A)sin2A

As we know,

cosec A = 1/sinA

So,



hence proved


Question 3.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 4.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 5.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 6.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 7.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 8.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 9.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 10.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 11.

Prove the following trigonometric identities:


Answer:


Hence Proved.



Question 12.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 13.

Prove the following trigonometric identities:



Answer:


Hence Proved.


Question 14.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 15.

Prove the following trigonometric identities:



Answer:
Consider,

(cosecθ + sinθ)(cosecθ - sinθ)

Apply the formula (a2 - b2) = (a+b)(a-b) we get,

(cosecθ + sinθ)(cosecθ - sinθ) = cosec2θ - sin2θ

As we know 1+cot2A = cosec2A
and 1-cos2A = sin2A

So,

(cosecθ + sinθ)(cosecθ - sinθ) = (1+cot2A) -(1-cos2A )
= 1+cot2A - 1+cos2A
=cot2A +cos2A

Hence Proved.


Question 16.

Prove the following trigonometric identities:



Answer: To prove:


Proof:


Use the identity cosec2θ = 1 + cot2θ

and the formula cosθ=1/ secθ and cosecθ=1/sinθ, tanθ= 1 / cotθ

cotθ = cosθ / sinθ


Hence Proved.


Question 17.

Prove the following trigonometric identities:



Answer: To Prove:

Proof:

Use the formula:

(a + b) (a - b) = a2 - b2 on (secθ + cosθ ) (secθ - cosθ)

Where a = secθ and b = cosθ

so,

(secθ + cosθ ) (secθ - cosθ) = sec2θ - cos2θ ...... (1)

We know,

sec2θ = tan2θ + 1

sin2θ + cos2θ = 1

Use the identities in the eq. (1)

(secθ + cosθ ) (secθ - cosθ) = sec2θ - cos2θ

= (tan2θ + 1) - (1 - sin2θ)

= tan2θ + 1 - 1 + sin2θ

= tan2θ + sin2θ

Hence proved.


Question 18.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 19.

Prove the following trigonometric identities:



Answer: taking LHS

(cosecA-sinA)(secA-cosA)(tanA+cotA)

As we know,

cosec A = 1/sinA
sec A = 1/cos A
tan A = sin / cos A

So,




As we know,

sin2A+ cos2A = 1


=1

Hence Proved.


Question 20.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 21.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 22.

Prove the following trigonometric identities:
=1


Answer: given : =1
To prove : Above equality holds.
Proof:
Consider LHS,
we know,

using these

Which is equal to RHS.

Hence Proved.


Question 23.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 24.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 25.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 26.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 27.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 28.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 29.

Prove the following trigonometric identities:



Answer: Use the formula:



Hence Proved.


Question 30.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 31.

Prove the following trigonometric identities:



Answer: Given :
To prove: Above equality.
Taking LHS
Use




= RHS
Hence Proved.


Question 32.

Prove the following trigonometric identities:



Answer: Taking RHS

tan6θ + 3tan2θsec2θ + 1

= (sec2θ - 1)3 + 3(sec2θ - 1)sec2θ + 1 [As, tan2θ = sec2θ - 1]

= (sec6θ - 1 - 3sec4θ + 3sec2θ) + (3sec4θ - 3sec2θ) + 1 [(a + b)3 = a3 - b3 - 3a2b + 3ab2]

= sec6θ
= LHS
Hence Proved.


Question 33.

Prove the following trigonometric identities:



Answer:



Question 34.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 35.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 36.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 37.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 38.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 39.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 40.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 41.

Prove the following trigonometric identities:



Answer: Given:

To prove:
Above equality

Proof:

Rationalize the LHS,

Use sin2x + cos2x =1

Solve,



Hence proved


Hence Proved.


Question 42.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 43.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 44.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 45.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 46.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 47.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 48.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 49.

Prove the following trigonometric identities:



Answer:

To Prove:

Dividing the numerator and denominator by cosθ, we get,




Now, we know that,
sec2θ - tan2θ = 1
Therefore, replacing 1 by sec2θ - tan2θ in the numerator only, we get,

As we know,
a2 - b2 = (a-b)(a+b)



= secθ + tanθ
Now, multiplying and dividing by secθ - tanθ, we get,

As we know,
sec2θ - tan2θ = 1

= R.H.S
Hence, proved.



Question 50.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 51.

Prove the following trigonometric identities:



Answer:

To prove:

Proof:

Consider LHS,





Use the formula:

secθ = 1/cos θ and tanθ=sinθ/cosθ




Do rationalization,








Use the formula cos2θ + sin2θ = 1








= - tan A

Consider RHS,



Use the formula:

secθ = 1/cos θ and tanθ=sinθ/cosθ




Do rationalization,









Use the formula cos2θ + sin2θ = 1







= - tan A

LHS = RHS

Hence proved.





Question 52.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 53.

Prove the following trigonometric identities:



Answer:

To prove:

Use the formula



Hence Proved.


Question 54.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 55.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 56.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 57.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 58.

If prove that


Answer:


Hence Proved.



Question 59.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 60.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 61.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 62.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 63.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 64.

Prove the following trigonometric identities:



Answer:



Therefore, LHS = RHS


Hence Proved.



Question 65.

Prove the following trigonometric identities:



Answer:

To prove:

Proof:

Consider LHS,

(secA-cosecA)(1+tanA+cotA)

We know,

cosecA=1/sinA,

secA=1/cosA,

tanA=sinA/cosA,

cotA=cosA/sinA

So,





Using the formula a3 - b3 = (a-b) (a2+b2+ab) we get,



LHS = RHS

Hence Proved.


Question 66.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 67.

Prove the following trigonometric identities:


Answer:


Hence Proved.



Question 68.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 69.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 70.

Prove the following trigonometric identities:



Answer:




From (1) and (2) we get


LHS = RHS


Hence Proved.



Question 71.

Prove the following trigonometric identities:



Answer:

To Prove:

Proof:

Consider the LHS,




= sinA - cosA+ cotA sinA - cotA cosA + tanA sinA - tanA cosA


Use the formula:













We know:




So,





Again use the formula:






So,









Use the formula:







Therefore,


Hence Proved.


Question 72.

Prove the following trigonometric identities:



Answer: To prove:

Proof:

Take LHS,

Use the identity sin2θ+cos2θ=1

sin2A cos2B - cos2A sin2B= sin2A(1 – sin2B) – (1 – sin2A)sin2B

= sin2A – sin2A sin2B – sin2B + sin2A sin2B

= sin2A – sin2B

= RHS

Hence Proved


Question 73.

Prove the following trigonometric identities:



Answer:

Use the formula



Hence Proved.


Question 74.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 75.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 76.

Prove the following trigonometric identities:



Answer:


Hence Proved.



Question 77.

If and prove that



Answer:


Hence Proved.



Question 78.

and , prove that .


Answer:


Hence Proved.



Question 79.

If cosecθ - sinθ = a3, secθ - cosθ = b3, prove that a2b2(a2 + b2).


Answer:

Similarly we can see that,


From (1) and (2), we get



Hence Proved.


Question 80.

If , , prove that

.


Answer:


Hence Proved.



Question 81.

If , prove that .


Answer:



Question 82.

If , prove that .


Answer:


Hence Proved.



Question 83.

If and , prove that


Answer:


Hence Proved.



Question 84.

If and , prove that .


Answer:


Hence Proved.



Question 85.

If , prove that


Answer: Consider,

cos A+ cos2A = 1

⇒cosA = 1 - cos2A

As we know 1-cos2A = sin2A

⇒ cosA = sin2A .... (1)

Now

sin2A + sin4A = sin2A + (sin2A)2

From 1

sin2A + sin4A = sin2A + ( cosA)2
= sin2A + cos2A
= 1

Hence Proved.


Question 86.

Prove that:

(i)

(ii)

(iii)

(iv)


Answer:

(i)


Hence Proved.


(ii)



Hence Proved.


(iii)



Hence Proved.


(iv)



Hence Proved.



Question 87.

If , prove that


Answer:



Hence Proved.



Question 88.

Given that:



Show that one of the values of each member of this equality is sin sinsin


Answer:


Hence Proved.



Question 89.

If prove that


Answer:


Hence Proved.



Question 90.

If , and , show that


Answer:


Hence Proved.




Exercise 6.2
Question 1.

If , find all other trigonometric ratios of angle .


Answer:



Hence Proved.



Question 2.

If , find all other trigonometric ratios of angle


Answer:



Question 3.

If , find the value of



Answer:



Question 4.

If , find the value of


Answer:



Question 5.

If , find the value of


Answer:



Question 6.

If , find the value of


Answer:


Now,




Question 7.

If , find the value of


Answer:


Now,




Question 8.

If , find the value of


Answer:


Now,




Question 9.

If , find the value of


Answer:



Question 10.

If , find the value of


Answer:



Question 11.

If , find the value of


Answer:




Question 12.

If, find .


Answer:




Cce - Formative Assessment
Question 1.

If sec θ + tan θ = x, then sec θ =
A.

B.

C.

D.


Answer:

Given: sec θ + tan θ = x ……………(i)

To find: sec θ


We know that 1 + tan2 θ = sec2 θ


⇒ sec2 θ – tan2 θ = 1


∵ a2 – b2 = (a – b) (a + b)


∴ sec2 θ – tan2 θ = (sec θ – tan θ) (sec θ + tan θ) = 1


⇒ From (i), we have


⇒ (sec θ – tan θ) x = 1


…………………(ii)


Adding (i) and (ii), we get





Question 2.

Define an identity.


Answer:

An equation that is true for all values of the variables involved is said to be an identity. For example:

a2 – b2 = (a – b) (a + b)


sin2 θ + cos2 θ = 1



Question 3.

If sec θ + tan θ = x, then tan θ =
A.

B.

C.

D.


Answer:

Given: sec θ + tan θ = x ……………(i)

To find: tan θ


We know that 1 + tan2 θ = sec2 θ


⇒ sec2 θ – tan2 θ = 1


∵ a2 – b2 = (a – b) (a + b)


∴ sec2 θ – tan2 θ = (sec θ – tan θ) (sec θ + tan θ) = 1


⇒ From (i), we have


⇒ (sec θ – tan θ) x = 1


…………………(ii)


Subtracting (ii) from (i), we get





Question 4.

What is the value of (1 – cos2θ) cosec2θ?


Answer:

To find: (1 – cos2 θ) cosec2 θ



…………(i)


∵ sin2 θ + cos2 θ = 1


∴ sin2 θ = 1 – cos2 θ


⇒ from (i), we have




Question 5.

What is the value of (1 + cot2θ) sin2θ?


Answer:

To find: (1 + cot2θ) sin2θ

∵ 1 + cot2 θ = cosec2 θ


∴ (1 + cot2θ) sin2θ = cosec2 θ sin2 θ


Also,





Question 6.

is equal to
A. sec θ + tan θ

B. sec θ − tan θ

C. sec2θ + tan2θ

D. sec2θ − tan2θ


Answer:

Note: Since all the options involve the trigonometric ratios sec θ and tan θ, so we divide the whole term (numerator as well as denominator) by cos θ.


To find:

Consider


Dividing numerator and denominator by cos θ, we get



Rationalizing the term by multiplying it by ,




Now, as 1 + tan2 θ = sec2 θ


⇒ sec2 θ – tan2 θ = 1



Question 7.

What is the value of ?


Answer:

To find:

∵ 1 + tan2 θ = sec2 θ



Also, we know that




Also,


∵ sin2 θ + cos2 θ = 1




Question 8.

The value of is
A. cot θ − cosec θ

B. cosec θ + cot θ

C. cosec2θ + cot2θ

D. (cot θ + cosec θ)2


Answer:

Note: Since all the options involve the trigonometric ratios cosec θ and cot θ, so we divide the whole term (numerator as well as denominator) by sin θ.


To find:


Consider


Dividing numerator and denominator by sin θ, we get



Rationalizing the term by multiplying it by ,




Now, as 1 + cot2 θ = cosec2 θ


⇒ cosec2 θ – cot2 θ = 1



Question 9.

If sec θ + tanθ = x, write the value of sec θ − tan θ in terms of x.


Answer:

Given: sec θ + tan θ = x ……………(i)

To find: sec θ – tan θ


We know that 1 + tan2 θ = sec2 θ


⇒ 1 = sec2 θ – tan2 θ


Now, ∵ a2 – b2 = (a – b) (a + b)


⇒ 1 = sec2 θ – tan2 θ = (sec θ – tan θ) (sec θ + tan θ)


⇒ From (i), we have


1 = (sec θ – tan θ) x




Question 10.

sec4 A − sec2 A is equal to
A. tan2 A − tan4 A

B. tan4 A − tan2 A

C. tan4 A + tan2 A

D. tan2 A + tan4 A


Answer:

Note: Since all the options involve the trigonometric ratio tan θ, so we use the identity 1 + tan2 θ = sec2 θ.


To find: sec4 A – sec2 A


Consider sec4 A – sec2 A = (sec2 A)2 – sec2 A


Now, as sec2 A = 1 + tan2 A


⇒ sec4 A – sec2 A = (sec2 A)2 – sec2 A


= (1 + tan2 A)2 – (1 + tan2 A)


= 1 + tan4 A + 2 tan2 A – 1 – tan2 A


= tan4 A + tan2 A


Question 11.

cos4 A − sin4 A is equal to
A. 2 cos2 A + 1

B. 2 cos2 A − 1

C. 2 sin2 A − 1

D. 2 sin2 A + 1


Answer:

To find: cos4 A – sin4 A

Consider cos4 A – sin4 A = (cos2 A)2 – (sin2 A)2


∵ a2 – b2 = (a – b) (a + b)


∴ cos4 A – sin4 A = (cos2 A)2 – (sin2 A)2


= (cos2 A – sin2 A) (cos2 A + sin2 A)


= (cos2 A – sin2 A) [∵ cos2 A + sin2 A = 1]


= cos2 A – (1 – cos2 A) [∵ sin2A = 1 – cos2A]


= cos2 A – 1 + cos2 A = 2 cos2 A – 1


Question 12.

If cosec θ − cot θ = α, write the value of cosec θ + cot α.


Answer:

Given: cosec θ – cot θ = α ………………(i)

To find: cosec θ + cot θ


We know that 1 + cot2 θ = cosec2 θ


⇒ 1 = cosec2 θ – cot2 θ


Now, ∵ a2 – b2 = (a – b) (a + b)


⇒ 1 = cosec2 θ – cot2 θ = (cosec θ – cot θ) (cosec θ + cot θ)


⇒ From (i), we have


1 = α (cosec θ + cot θ)




Question 13.

Write the value of cosec2 (90° − θ) − tan2θ.


Answer:

To find: cosec2 (90° − θ) − tan2θ

∵ cosec (90° – θ) = sec θ


∴ cosec2 (90° – θ) = sec2 θ


⇒ cosec2 (90° θ) − tan2 θ = sec2 θ – tan2 θ


Now, ∵ 1 + tan2 θ = sec2 θ


∴ cosec2 (90° − θ) − tan2 θ = sec2 θ – tan2 θ


= 1 + tan2 θ – tan2 θ = 1



Question 14.

is equal to
A.

B.

C.

D.


Answer:

To find:

Consider


Rationalizing the above fraction by (1 – cos θ),



[∵ (a – b) (a + b) = a2 – b2]


∵ sin2 θ + cos2 θ = 1


⇒ sin2 θ = 1 – cos2 θ



Question 15.

Write the value of sin A cos (90° − A) + cos A sin (90° − A).


Answer:

To find: sin A cos (90° − A) + cos A sin (90° − A)

∵ cos (90° – A) = sin A and sin (90° – A) = cos A ……………(i)


∴ sin A cos (90° − A) + cos A sin (90° − A)


= sin A sin A + cos A cos A [Using (i)]


= sin2 A + cos2 A


Now, ∵ sin2 θ + cos2 θ = 1


∴ sin A cos (90° − A) + cos A sin (90° − A)


= sin2 A + cos2 A = 1



Question 16.

is equal to
A. 0

B. 1

C. sin θ + cos θ

D. sin θ − cos θ


Answer:

Given:
To find:
The value of
Solution:

Use:

So,





Using the identity,


a2 – b2 = (a – b) (a + b)




Question 17.

Write the value of .


Answer:

To find:




Also, we know that 1 + cot2 θ = cosec2 θ


⇒ cot2 θ – cosec2 θ = – 1




Question 18.

The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
A. 1

B. 2

C. 4

D. 0


Answer:

To find: (1 + cot θ − cosec θ) (1 + tan θ + sec θ)

Consider (1 + cot θ − cosec θ) (1 + tan θ + sec θ)





[∵ (a – b) (a + b) = a2 – b2]



[∵ sin2 θ + cos2 θ = 1]



Question 19.

is equal to
A. 2 tan θ

B. 2 sec θ

C. 2 cosec θ

D. 2 tan θ sec θ


Answer:

To find:

Consider







[∵ sin2 θ = 1 – cos2 θ]




Question 20.

If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2 ?


Answer:

Given: x = a sin θ and y = b cos θ

⇒ x2 = a2 sin2 θ and y2 = b2 cos2 θ ………(i)


To find: b2x2 + a2y2


Consider b2x2 + a2y2 = b2 a2 sin2 θ + a2 b2 cos2 θ


= a2 b2 (sin2 θ + cos2 θ)


= a2 b2 (1) [∵ sin2 θ + cos2 θ = 1]


= a2 b2



Question 21.

(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal
A. 0

B. 1

C. −1

D. None of these


Answer:

To find: (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)


∴ (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)



Now, as sin2 θ + cos 2 θ = 1


⇒ sin2 θ = 1 – cos2 θ


And cos2 θ = 1 – sin2 θ



Hence the answer is 'B'


Question 22.

If , what is the value of cot θ + cosec θ?


Answer:

Given:

To find: cot θ + cosec θ


∵ sin2 θ + cos2 θ = 1


∴ cos2 θ = 1 – sin2 θ




Now, as


Also,




Question 23.

What is the value of 9 cot2θ − 9 cosec2θ?


Answer:

To find: 9 cot2 θ – 9 cosec2 θ

Consider 9 cot2 θ – 9 cosec2 θ = 9 (cot2 θ – cosec2 θ)


Now ∵ 1 + cot2 θ = cosec2 θ


⇒ cot2 θ – cosec2 θ = – 1


⇒ 9 cot2 θ – 9 cosec2 θ = 9 (cot2 θ – cosec2 θ) = 9 ( – 1) = – 9



Question 24.

If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
A. a2b2

B. ab

C. a4b4

D. a2 + b2


Answer:

Given: x = a sin θ and y = b cos θ

⇒ x2 = a2 sin2 θ and y2 = b2 cos2 θ …………………(i)


To find: b2x2 + a2y2


Consider b2x2 + a2y2 = b2 a2 sin2 θ + a2 b2 cos2 θ


= a2 b2 (sin2 θ + cos2 θ)


= a2 b2 (1) [∵ sin2 θ + cos2 θ = 1]


= a2 b2


Question 25.

What is the value of ?


Answer:

To find:




Now, as 1 + tan2 θ = sec2 θ


⇒ tan2 θ – sec2 θ = – 1




Question 26.

If x = a sec θ and y = b tan θ, then b2x2− a2y2 =
A. ab

B. a2− b2

C. a2 + b2

D. a2 b2


Answer:

Given: x = a sec θ and y = b tan θ

⇒ x2 = a2 sec2 θ and y2 = b2 tan2 θ ……………………(i)


To find: b2x2 – a2y2


Consider b2x2 – a2y2 = b2 a2 sec2 θ – a2 b2 tan2 θ


= a2 b2 (sec2 θ – tan2 θ)


= a2 b2 (1) [∵ sec2 θ – tan2 θ = 1]


= a2 b2


Question 27.

is equal to
A. 0

B. 1

C. −1

D. 2


Answer:

To find:

Consider






Question 28.

What is the value of ?


Answer:

To find:

We know that 1 + tan2 θ = sec2 θ


And 1 + cot2 θ = cosec2 θ


⇒ tan2 θ – sec2 θ = – 1


And cot2 θ – cosec2 θ = – 1




Question 29.

2(sin6θ + cos6θ) − 3(sin4θ + cos4θ) is equal to
A. 0

B. 1

C. −1

D. None of these


Answer:

To find: 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ)

First, we consider


sin6 θ + cos6 θ = (sin2 θ)3 + (cos2 θ)3


Now, as (a + b)3 = a3 + b3 + 3a2b + 3ab2


⇒ a3 + b3 = (a + b)3 – 3a2b – 3ab2


⇒ sin6 θ + cos6 θ


= (sin2 θ)3 + (cos2 θ)3


= (sin2 θ + cos2 θ)3 – 3 (sin2 θ)2 cos2 θ – 3 sin2 θ (cos2 θ)2


= 1 – 3 sin4 θ cos2 θ – 3 sin2 θ cos4 θ [∵ sin2 θ + cos2 θ = 1]


= 1 – 3 sin2 θ cos2 θ (sin2 θ + cos2 θ)


= 1 – 3 sin2 θ cos2 θ [∵ sin2 θ + cos2 θ = 1] ………(i)


Next, we consider


sin4 θ + cos4 θ = (sin2 θ)2 + (cos2 θ)2


Now, as (a + b)2 = a2 + b2 + 2ab


⇒ a2 + b2 = (a + b)2 – 2ab


⇒sin4 θ + cos4 θ


= (sin2 θ)2 + (cos2 θ)2


= (sin2 θ + cos2 θ)2 – 2 sin2 θ cos2 θ


= 1 – 2 sin2 θ cos2 θ [∵ sin2 θ + cos2 θ = 1] ………(ii)


Now, using (i) and (ii), we have


2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ)


= 2(1 – 3 sin2 θ cos2 θ) – 3(1 – 2 sin2 θ cos2 θ)


= 2 – 6 sin2 θ cos2 θ – 3 + 6 sin2 θ cos2 θ


= 2 – 3 = – 1


Question 30.

What is the value of (1 + tan2θ) (1 − sin θ) (1 + sin θ)?


Answer:

To find: (1 + tan2θ) (1 − sin θ) (1 + sin θ)

∵ (a – b) (a + b) = a2 – b2


∴ (1 + tan2θ) (1 − sin θ) (1 + sin θ)


= (1 + tan2 θ) (1 – sin2 θ)


Now, as sin2 θ + cos2 θ = 1


⇒ 1 – sin2 θ = cos2 θ ……………………(i)


Also, we know that 1 + tan2 θ = sec2 θ …………………(ii)


Using (i) and (ii), we have


(1 + tan2θ) (1 − sin θ) (1 + sin θ)


= (1 + tan2 θ) (1 – sin2 θ)


= sec2 θ cos2 θ




⇒ (1 + tan2 θ) (1 − sin θ) (1 + sin θ)


= sec2 θ cos2 θ


=



Question 31.

If a cos θ + b sin θ and a sin θ − b cos θ = 3, then a2 + b2 =
A. 7

B. 12

C. 25

D. None of these


Answer:

Given: a cos θ + b sin θ = 4

Squaring both sides, we get


(a cos θ + b sin θ)2 = 42


⇒ a2 cos2 θ + b2 sin2 θ + 2ab sin θ cos θ = 16 ………(i)


and a sin θ – b cos θ = 3


Squaring both sides, we get


(a sin θ – b cos θ)2 = 32


⇒ a2 sin2 θ + b2 cos2 θ – 2ab sin θ cos θ = 9 ………(ii)


To find: a2 + b2


Adding (i) and (ii), we get


a2 cos2 θ + b2 sin2 θ + 2ab sin θ cos θ


+ a2 sin2 θ + b2 cos2 θ – 2ab sin θ cos θ = 16 + 9


⇒ a2 (sin2 θ + cos2 θ) + b2 (sin2 θ + cos2 θ) = 25


⇒ a2 + b2 = 25 [∵ sin2 θ + cos2 θ = 1]


Question 32.

If , find the value of tan A + cot A.


Answer:

Given:

To find: tan A + cot A


∵ sin2 A + cos2 A = 1


⇒ sin2 A = 1 – cos2 A




Now, as


And




Question 33.

If a cot θ + b cosec θ = p and b cot θ + a cosec θ = q, then p2− q2 =
A. a2− b2

B. b2− a2

C. a2 + b2

D. b − a


Answer:

Given: a cot θ + b cosec θ = p

Squaring both sides, we get


(a cot θ + b cosec θ)2 = p2


⇒ a2 cot2 θ + b2 cosec2 θ + 2ab cot θ cosec θ = p2 ……(i)


and b cot θ + a cosec θ = q


Squaring both sides, we get


(b cot θ + a cosec θ)2 = q2


⇒ b2 cot2 θ + a2 cosec2 θ + 2ab cot θ cosec θ = q2 ……(ii)


To find: p2 – q2


Subtracting (ii) from (i), we get


a2 cot2 θ + b2 cosec2 θ + 2ab cot θ cosec θ – b2 cot2 θ – a2 cosec2 θ – 2ab cot θ cosec θ = p2 – q2


⇒ P2 – q2 = a2 (cot2 θ – cosec2 θ) + b2 (cosec2 θ – cot2 θ)


= a2 ( – 1) + b2 (1) [∵1 = cosec2 θ – cot2 θ]


= b2 – a2


Question 34.

If , then find the value of 2 cot2θ + 2.


Answer:

Given:

To find: The value of 2 cot2 θ + 2.

Solution:



⇒ cosec2 θ = 32 = 9


Also, 1 + cot2 θ = cosec2 θ


⇒ cot2 θ = cosec2 θ – 1 = 9 – 1 = 8


⇒ 2 cot2 θ + 2 = 2 (8) + 2 = 16 + 2 = 18
Hence, the value of 2 cot2 θ + 2 is 18.


Question 35.

The value of sin2 29° + sin2 61° is
A. 1

B. 0

C. 2 sin2 29°

D. 2 cos2 61


Answer:

To find: sin2 29° + sin261°

Consider sin2 29° + sin261°


∵ 29 = 90 – 61


∴ sin2 29° + sin261° = sin2 (90° – 61°) + sin2 61°


Now, as sin (90° – θ) = cos θ


⇒ sin2 29° + sin261° = sin2 (90° – 61°) + sin2 61°


= cos2 61° + sin2 61°


= 1 [sin2 θ + cos2 θ = 1]


Question 36.

If , then find the value of 9 tan2θ + 9.


Answer:

Given:

To find: 9 tan2 θ + 9




Also, we know that 1 + tan2 θ = sec2 θ





Question 37.

If x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ, then
A. x2 + y2 + z2 = r2

B. x2 + y2− z2 = r2

C. x2− y2 + z2 = r2

D. z2 + y2− x2 = r2


Answer:

Given: x = r sin θ cos ϕ, y = r sin θ sin φ and z = r cos θ,

Solution:

x = r sin θ cos ϕ

Squaring both sides, we get

x2 = r2 sin2 θ cos2ϕ ……….(i)

and y = r sin θ sin ϕ

Squaring both sides, we get

⇒ y2 = r2 sin2 θ sin2ϕ ……….(ii)

z = r cos θ

Squaring both sides, we get

⇒ z2 = r2 cos2 θ ……….(iii)

Adding (i), (ii) and (iii), we get

x2 + y2 + z2 = r2 sin2 θ cos2ϕ + r2 sin2 θ sin2ϕ + r2 cos2 θ

= r2 (sin2 θ cos2ϕ + sin2 θ sin2ϕ + cos2 θ)

= r2 [sin2 θ (cos2ϕ + sin2ϕ) + cos2 θ]

∵ sin2 θ + cos2 θ = 1

= r2 [sin2 θ + cos2 θ]

Again apply the identity sin2 θ + cos2 θ = 1

= r2

Hence x2 + y2 + z2 = r2


Question 38.

If sec2θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


Answer:

Given: sec2θ (1 + sin θ) (1 − sin θ) = k

To find: k


Consider sec2θ (1 + sin θ) (1 − sin θ)


∵ (a – b) (a + b) = a2 – b2


∴ sec2θ (1 + sin θ) (1 − sin θ) = sec2 θ (1 – sin2 θ)


Now, as sin2 θ + cos2 θ = 1


⇒ cos2 θ = 1 – sin2 θ


⇒ sec2 θ (1 + sin θ) (1 − sin θ) = sec2 θ (1 – sin2 θ)


= sec2 θ cos2 θ


Now, ∵



⇒ sec2 θ (1 + sin θ) (1 − sin θ) = sec2 θ (1 – sin2 θ)


= sec2 θ cos2 θ



⇒ k = 1



Question 39.

If cosec2θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.


Answer:

Given: cosec2θ (1 + cos θ) (1 − cos θ) = λ

To find: λ


Consider cosec2θ (1 + cos θ) (1 − cos θ)


∵ (a – b) (a + b) = a2 – b2


∴ cosec2θ (1 + cos θ) (1 − cos θ) = cosec2 θ (1 – cos2 θ)


Now, as sin2 θ + cos2 θ = 1


⇒ sin2 θ = 1 – cos2 θ


⇒ cosec2θ (1 + cos θ) (1 − cos θ) = cosec2 θ (1 – cos2 θ)


= cosec2 θ sin2 θ


Now, ∵



⇒ cosec2 θ (1 + cos θ) (1 − cos θ) = cosec2 θ (1 – cos2 θ)


= cosec2 θ sin2 θ




Question 40.

If sin θ + sin2 = 1, then cos2θ + cos4θ =
A. −1

B. 1

C. 0

D. None of these


Answer:

Given: sin θ + sin2 θ = 1

⇒ sin θ = 1 – sin2 θ = cos2 θ [∵ sin2 θ + cos2 θ = 1]……(i)


⇒ Sin2 θ = (cos2 θ)2 = cos4 θ ……(ii)


To find: cos2 θ + cos4 θ


Consider cos2 θ + cos4 θ = sin θ + sin2 θ [Using (i) and (ii)]


= 1 [Given]


Question 41.

If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
A. m2− n2

B. m2n2

C. n2− m2

D. m2 + n2


Answer:

Given: a cos θ + b sin θ = m

Squaring both sides, we get


(a cos θ + b sin θ)2 = m2


⇒ a2 cos2 θ + b2 sin2 θ + 2ab cos θ sin θ = m2 ……(i)


And a sin θ – b cos θ = n


Squaring both sides, we get


(a sin θ – b cos θ)2 = n2


⇒ a2 sin2 θ + b2 cos2 θ – 2ab sin θ cos θ = n2 ……(ii)


To find: a2 + b2


Adding (i) and (ii), we get


a2 cos2 θ + b2 sin2 θ + 2ab cos θ sin θ + a2 sin2 θ + b2 cos2 θ – 2ab sin θ cos θ = m2 + n2


⇒ a2 (cos2 θ + sin2 θ) + b2 (sin2 θ + cos2 θ) = m2 + n2


⇒ a2 + b2 = m2 + n2 [∵ sin2 θ + cos2 θ = 1]


Question 42.

If sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) = λ, then find the value of λ.


Answer:

Given: sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) = λ

To find: λ


We know that 1 + tan2 θ = sec2 θ


And 1 + cot2 θ = cosec2 θ


⇒ sin2θ cos2θ (1 + tan2θ) (1 + cot2θ)


= sin2 θ cos2 θ sec2 θ cosec2 θ


Now, ∵



And ∵



⇒ sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ)


= sin2 θ cos2 θ sec2 θ cosec2 θ



⇒ λ = 1



Question 43.

If 5x = sec θ and , find the value of .


Answer:

Given: 5x = sec θ


………(i)


And




………(ii)


To find:


Consider [Using (i)]


[Using (ii)]



Now, as 1 + tan2 θ = sec2 θ


⇒ 1 = sec2 θ – tan2 θ




Question 44.

If cos A + cos2 A = 1, then sin2 A + sin4 A
A. −1

B. 0

C. 1

D. None of these


Answer:

Given: cos A + cos2 A = 1

⇒ cos A = 1 – cos2 A = sin2 A [∵ sin2 A + cos2 A = 1]……(i)


Squaring both sides, we get


⇒ cos2 A = (sin2 A)2 = sin4 A ……(ii)


To find: sin2 A + sin4 A


Consider sin2 A + sin4 A = cos A + cos2 A [From (i) and (ii)]


= 1


Question 45.

If x = a sec θ cos φ, y = b sec θ sin φ and z = c tan θ, then
A.

B.

C.

D.


Answer:

Given: x a sec θ cos ϕ

Squaring both sides, we get


x2 = a2 sec2 θ cos2ϕ


and y = b sec θ sin ϕ


Squaring both sides, we get


y2 = b2 sec2 θ sin2ϕ


And z = c tan θ


⇒ z2 = c2 tan2 θ


………(i)


To find:


Consider


= sec2 θ cos2ϕ + sec2 θ sin2ϕ


= sec2 θ (cos2ϕ + sin2ϕ)


= sec2 θ [∵ sin2ϕ + cos2ϕ = 1]


= 1 + tan2 θ [∵ 1 + tan2 θ = sec2 θ]



Question 46.

If cosec θ = 2x and , find the value of


Answer:

Given: cosec θ = 2x


…………………(i)


And




…………………(ii)


To find:


Consider [Using (i)]


[Using (ii)]



Now, as 1 + cot2 θ = cosec2 θ


⇒ 1 = cosec2 θ – cot2 θ




Question 47.

If a cos θ − b sin θ = c, then a sin θ + b cos θ =
A.

B.

C.

D. None of these


Answer:

Given: a cos θ – b sin θ = c

To find: a sin θ + b cos θ


Consider a cos θ – b sin θ = c


Squaring both sides, we get


(a cos θ – b sin θ)2 = c2


∵ (a – b)2 = a2 + b2 – 2ab


∴ a cos θ – b sin θ = c


⇒ a2 cos2 θ + b2 sin2 θ – 2ab sinθ cos θ = c2 ……(i)


Now, ∵ sin2 θ + cos2 θ = 1


∴ sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ


⇒ From (i), we have


⇒ a2 (1 – sin2 θ) + b2 (1 – cos2 θ) – 2ab sin θ cos θ = c2


⇒ a2 – a2 sin2 θ + b2 – b2 cos2 θ – 2ab sin θ cos θ = c2


⇒ a2 + b2 – (a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ) = c2


⇒ – (a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ) = c2 – a2 – b2


⇒ a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ = a2 + b2 – c2


⇒ (a sin θ)2 + (b cos θ)2 + 2 (a sin θ) (b cos θ) = a2 + b2 – c2


⇒ (a sin θ + b cos θ)2 = a2 + b2 – c2



Question 48.

9 sec2 A − 9 tan2 A is equal to
A. 1

B. 9

C. 8

D. 0


Answer:

To find: 9 sec2 A – 9 tan2 A

Consider 9 sec2 A – 9 tan2 A = 9 (sec2 A – tan2 A)


∵ 1 + tan2 A = sec2 A


∴ 9 sec2 A – 9 tan2 A = 9 (sec2 A – tan2 A)


= 9 (1 + tan2 A – tan2 A) = 9


Question 49.

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) =
A. 0

B. 1

C. 1

D. −1


Answer:

To find: (1 + tan θ + sec θ) (1 + cot θ − cosec θ)

Consider (1 + tan θ + sec θ) (1 + cot θ − cosec θ)





[∵ (a – b) (a + b) = a2 – b2]



[∵ sin2 θ + cos2 θ = 1]



Question 50.

(sec A + tan A) (1 − sin A) =
A. sec A

B. sin A

C. cosec A

D. cos A


Answer:

To find: (sec A + tan A) (1 − sin A)

Consider (sec A + tan A) (1 − sin A)


We know that




∵ (a + b) (a – b) = a2 – b2



Also, sin2 A + cos2 A = 1 ⇒ 1 – sin2 A = cos2 A



Question 51.

is equal to
A. sec2 A

B. −1

C. cot2 A

D. tan2 A


Answer:

To find:

Consider


∵ 1 + tan2 A = sec2 A and 1 + cot2 A = cosec2 A