Buy BOOKS at Discounted Price

Trigonometric Functions

Class 11th Mathematics NCERT Exemplar Solution
Exercise
  1. Prove that tana+seca-1/tana-seca+1 = 1+sina/cosa .
  2. If 2sinalpha /1+cosalpha +sinalpha = y then prove that 1-cosalpha +sinalpha…
  3. Which of the following is not correct?A. sintegrate heta = - 1/5 B. cos θ = 1 C.…
  4. If m sin θ = n sin (θ + 2α), then prove that tan (θ + α) cot α = m+n/m-n [Hints:…
  5. If cos (alpha + beta) = 4/5 sin (alpha - beta) = 5/13 where α lie between 0 and π/4, find…
  6. If tanx = b/a then find the value of root a+b/a-b + root a-b/a+b
  7. Prove that [Hint: Express L.H.S. = 1/2 [2costheta cos theta /2 - 2cos3theta cos 9…
  8. If a cos θ + b sin θ = m and a sin θ - b cos θ = n, then show that a^2 + b^2 = m^2…
  9. Find the value of tan 22°30’. [Hint: Let θ = 45°, use tan theta /2 = sin theta…
  10. Prove that sin 4A = 4sinA cos^3 A - 4cosA sin^3 A (corrected question)…
  11. If tan θ + sin θ = m and tan θ - sin θ = n, then prove that m^2 - n^2 = 4 sin θ…
  12. If tan (A + B) = p, tan (A - B) = q, then show that tan2a = p+q/1-pq . [Hint: Use 2A = (A…
  13. If cosα + cosβ = 0 = sinα + sinβ, then prove that cos 2α + cos 2β = -2cos (α +…
  14. If sin (x+y)/sin (x-y) = a+b/a-b then show that tanx/tany = a/b [Hint: Use componendo and…
  15. If tantheta = sinalpha -cosalpha /sinalpha +cosalpha then show that sinα + cosα = √2 cos…
  16. If sin θ + cos θ = 1, then find the general value of θ.
  17. Find the most general value of θ satisfying the equation tan θ = -1 and costheta…
  18. If cos θ + tan θ = 2 cosec θ, then find the general value of θ. Correct question:…
  19. If 2sin^2 θ = 3cos θ, where 0 ≤ θ ≤ 2π, then find the value of θ
  20. If sec x cos 5x + 1 = 0, where 0 x ≤ π/2, then find the value of x.…
  21. If sin (θ + α) = a and sin (θ + β) = b, then prove that cos 2(α - β) - 4ab cos (α - β) = 1…
  22. If cos (θ + ϕ) = m cos (θ - ϕ), then prove that tantheta = 1-m/1+m cosphi [Hint:…
  23. Find the value of the expression 3[sin^4 (3 pi /2 - alpha) + sin^4 (3 pi +…
  24. If a cos2θ + b sin 2θ = c has α and β as its roots, then prove that tanalpha…
  25. If x = sec ϕ - tan ϕ and y = cosec ϕ + cot ϕ, then show that xy + x - y + 1 = 0.…
  26. If θ lies in the first quadrant and costheta = 8/17 then find the value of cos(30° + θ) +…
  27. Find the value of the expression cos^4 pi /8 + cos^4 3 pi /8 + cos^4 5 pi /8 +…
  28. Find the general solution of the equation 5cos^2 θ + 7sin^2 θ - 6 = 0…
  29. Find the general solution of the equation sin x - 3sin2x + sin3x = cos x - 3cos2x…
  30. Find the general solution of the equation (root 3-1) costheta + (root 3+1)…
  31. If sin θ + cosec θ = 2, then sin^2 θ + cosec^2 θ is equal toA. 1 B.4 C. 2 D. None…
  32. If f(x) = cos^2 x + sec^2 x, thenA. f(x) 1 B. f(x) = 1 C. 2 f(x) 1 D. f(x) ≥ 2…
  33. If tan θ = 1/2 and tan ϕ = 1/3, then the value of θ + ϕ isA. π/6 B. π C. 0 D. π/4…
  34. The value of tan 1° tan 2° tan 3°… tan 89° isA. 0 B. 1 C. 1/2 D. Not defined…
  35. The value of 1-tan^215^circle /1+tan^215^circle isA. 1 B. root 3 C. root 3/2 D. 2…
  36. The value of cos 1° cos 2° cos 3°… cos 179° isA. 1/root 2 B. 0 C. 1 D. -1…
  37. If tan θ = 3 and θ lies in third quadrant, then the value of sin θ isA. 1/root 10…
  38. The value of tan 75°- cot 75° is equal toA. 2 root 3 B. 2 + root 3 C. 2 - root 3…
  39. Which of the following is correct?A. sin 1° sin 1 B. sin 1° sin 1 C. sin 1° = sin…
  40. If tanalpha = m/m+1 , tanbeta = 1/2m+1 then α + β is equal toA. pi /2 B. pi /3 C.…
  41. The minimum value of 3 cos x + 4 sin x + 8 isA. 5 B. 9 C. 7 D. 3
  42. The value of tan 3A - tan 2A -tan A is equal toA. tan 3A tan 2A tan A B. - tan 3A…
  43. The value of sin (45° + θ) - cos (45°-θ) isA. 2 cos θ B. 2sin θ C. 1 D. 0…
  44. The value of cot (pi /4 + theta) cot (pi /4 - theta) isA. -1 B. 0 C. 1 D. Not…
  45. cos 2θ cos 2ϕ + sin^2 (θ-ϕ) - sin^2 (θ + ϕ) is equal toA. sin 2(θ + ϕ) B. cos 2(θ…
  46. The value of cos 12° + cos 84° + cos 156° + cos 132° isA. 1/2 B. 1 C. - 1/2 D.…
  47. If tana = 1/2 , tanb = 1/3 then tan (2A + B) is equal toA. 1 B. 2 C. 3 D. 4…
  48. The value of sin pi /10 sin 13 pi /10 isA. 1/2 B. - 1/2 C. - 1/4 D. 1 [Hint: Use…
  49. The value of sin 50°- sin 70° + sin 10° is equal toA. 1 B. 0 C. 1/2 D. 2…
  50. If sin θ + cos θ = 1, then the value of sin 2θ is equal toA. 1 B. 1/2 C. 0 D. -1…
  51. If alpha _0 + beta = pi /4 then the value of (1+ tanα) (1 + tanβ) isA. 1 B. 2 C.…
  52. If sintegrate heta = -4/5 and θ lies in third quadrant then the value of cos…
  53. Number of solutions of the equation tan x + sec x = 2 cos x lying in the interval…
  54. The value of sin pi /18 + sin pi /9 + sin 2 pi /9 + sin 5 pi /18 is given byA.…
  55. If A lies in the second quadrant and 3 tan A + 4 = 0, then the value of 2 cot A-…
  56. The value of cos^2 48°- sin^2 12° isA. root 5+1/8 B. root 5-1/8 C. root 5+1/5 D.…
  57. If tanalpha = 1/7 , tanbeta = 1/3 then cos 2α is equal toA. sin 2β B. sin 4β C.…
  58. If tantheta = a/b then b cos 2θ + a sin 2θ is equal toA. a B. b C. a/b D. None…
  59. If for real values of x, costheta = x + 1/x thenA. θ is an acute angle B. θ is right angle…
  60. The value of sin50^circle /sin130^circle is _______. Fill in the blanks…
  61. If k = sin (pi /18) sin (5 pi /18) sin (7 pi /18) then the numerical value of k…
  62. If tana = 1-cosb/sinb then tan 2A = _______. Fill in the blanks
  63. If sin x + cos x = a, then (i) sin^6 x + cos^6 x = _______ (ii) |sin x - cos x| =…
  64. In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is…
  65. 3(sin x - cos x)^4 + 6 (sin x + cos x)^2 + 4(sin^6 x + cos^6 x) = _______. Fill…
  66. Given x 0, the values of f (x) = - 3cosroot 3+x+x^2 lie in the interval _______. Fill in…
  67. Fill in the blanksThe maximum distance of a point on the graph of the function y = root…
  68. If tana = 1-cosb/sinb then tan 2A = tan B. True and False
  69. The equality sin A + sin 2A + sin 3A = 3 holds for some real value of A. True and False…
  70. sin 10° is greater than cos 10°. True and False
  71. cos 2 pi /15 cos 4 pi /15 cos 8 pi /15 cos 16 pi /15 = 1/16 True and False…
  72. One value of θ which satisfies the equation sin^4 θ - 2sin^2 θ - 1 lies between 0…
  73. If cosec x = 1 + cot x then x = 2n pi , 2n pi + pi /2 True and False…
  74. If tan θ + tan 2θ + root 3 tan θ tan 2θ = root 3 , then theta = n pi /3 + pi /9…
  75. If tan(π cos θ) = cot (π sin θ), then cos (theta - pi /4) = plus or minus 1/2…
  76. In the following match each item given under the column C1 to its correct answer…

Exercise
Question 1.

Prove that .


Answer:

To prove:


As equation on RHS is a simplified expression, so we must opt Left side equation and simplify it further so that we can get


LHS = RHS.


And thus we will be able to prove it.


∵ LHS =





The expression gives us hint that we ca use the identity:


sin2A + cos2A = 1 to simplify the expression but to use this we need to multiply numerator and denominator with


sin A + (1 – cos A).


∴ LHS =










Hence, it is proved that:



Question 2.

If then prove that is also equal to y.



Answer:

As we have to prove:


Given,


y =


As we need to get (1 – cos α + sin α) in numerator, so we need to bring this term in numerator.


∴ Multiplying numerator and denominator by


(1 – cos α + sin α),we get -




using (a + b) (a-b) = a2 – b2, we get:




∵ 1 – cos2α = sin2 α





Thus,



Question 3.

Which of the following is not correct?
A.

B. cos θ = 1

C.

D. tan θ = 20


Answer:

We know that,


a) is correct since Sin θ ∈ [-1,1]


b) cos θ = 1 is correct since Cos θ ∈ [-1,1]


c)



⇒cos θ=2 is incorrect since Cos θ ∈ [-1,1]


d) tan θ = 20 is correct since tan θ ∈ R.


e)


Question 4.

If m sin θ = n sin (θ + 2α), then prove that

tan (θ + α) cot α =

[Hints: Express and apply componendo and dividend]


Answer:

Given,


m sin θ = n sin (θ + 2α)


To prove: tan (θ + α)cot α =


∵ m sin θ = n sin (θ + 2α)



Applying componendo-dividendo rule –



By transformation formula of T-ratios we know that –


sin A + sin B =


and sin A – sin B =


∴ On applying formula, we get –




{∵ tan x = (sin x)/(cos x)}


∴ tan (θ + α) cot α =



Question 5.

If where α lie between 0 and π/4, find value of tan 2α

[Hint: Express tan 2α as tan (α + β + α – β]


Answer:

Given that,


cos(α + β) = 4/5 …(1)


we know that: sin x = √(1 – cos2x)


∴ sin (α + β) = √(1 – cos2(α + β))


⇒ sin (α + β) = …(2)


Also,


sin(α - β) = 5/13 {given} …(3)


we know that: cos x = √(1 – sin2x)


∴ cos (α - β) = √(1 – sin2(α - β))


⇒ cos (α - β) = …(4)


∵ tan 2α = tan (α + β + α – β)


We know that:


∴ tan 2α =


⇒ tan 2α =


Using equation 1,2,3 and 4 we have –







Hence, tan 2α = 56/33



Question 6.

If then find the value of


Answer:

Given: tan x = b/a


Let, y =










Question 7.

Prove that

[Hint: Express L.H.S.


Answer:

To prove:


As equation on RHS is a simplified expression, so we must opt Left side equation and simplify it further so that we can get


LHS = RHS.


And thus we will be able to prove it.


∵ LHS =


By seeing the expression we can think that the problem can be solved using transformation formula:


By transformation formula, we have:


2 cos A cos B = cos(A + B) + cos (A – B)


-2 sin A sin B = cos(A + B) - cos (A – B)


Or cos A – cos B =


But as LHS expression does not contain ‘2’ in its term. So we multiply and divide the expression by 2.


∴ LHS =


Applying transformation formula, we have –


LHS =


⇒ LHS =


⇒ LHS = {∵ cos (-x) = cos x}


⇒ LHS =


Again, applying the transformation formula:


⇒ LHS =


⇒ LHS =


∴ LHS = sin 4θ sin = RHS


Hence:



Question 8.

If a cos θ + b sin θ = m and a sin θ – b cos θ = n, then show that a2 + b2 = m2 + n2.


Answer:

Given,


a cos θ + b sin θ = m …(1)


a sin θ – b cos θ = n …(2)


Squaring and adding equation 1 and 2, we get –


(a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = m2 + n2


⇒ a2cos2θ + b2sin2θ + 2ab sin θ cos θ + a2sin2θ + b2cos2θ - 2ab sin θ cos θ = m2 + n2


⇒ a2cos2θ + b2sin2θ + a2sin2θ + b2cos2θ = m2 + n2


⇒ a2(sin2θ + cos2θ) + b2(sin2θ + cos2θ) = m2 + n2


Using: sin2θ + cos2θ = 1, we get –


⇒ a2 + b2 = m2 + n2



Question 9.

Find the value of tan 22°30’.

[Hint: Let θ = 45°, use


Answer:

Let, θ = 45°


As we need to find: tan 22°30’ = tan (θ/2)



If somehow, we manage to get sin θ and cos θ in numerator and denominator, our problem will be solved as we know that –


sin θ = cos θ = 1/√2 (for θ = 45°)


As,


Multiplying in numerator and denominator, we get –



By applying formula of T-ratios of multiple angles-


sin 2x = 2sin x cos x


cos 2x = 2cos2x – 1 or 1 + cos 2x = 2cos2x



⇒ tan 22°30’ =




By rationalizing the term, we get-


⇒ tan 22°30’ =


∴ tan 22°30’ = √2 – 1



Question 10.

Prove that sin 4A = 4sinA cos3A – 4cosA sin3A (corrected question)


Answer:

∵ sin 4A = sin (2A + 2A)


As we know that-


sin(A + B) = sin A cos B + cos A sin B


∴ sin 4A = sin 2A cos 2A + cos 2A sin 2A


⇒ sin 4A = 2 sin 2A cos 2A


From T-ratios of multiple angle, we know that


sin 2A = 2 sin A cos A and cos 2A = cos2A – sin2A


⇒ sin 4A = 2(2 sin A cos A)(cos2A – sin2A)


⇒ sin 4A = 4 sin A cos3A – 4 cos A sin3A


Hence: sin 4A = 4 sin A cos3A – 4 cos A sin3A



Question 11.

If tan θ + sin θ = m and tan θ – sin θ = n, then prove that

m2 – n2 = 4 sin θ tan θ

[Hint: m + n = 2tanθ, m – n = 2 sin θ, then use m2 – n2 = (m + n)(m – n)]


Answer:

Given,


tan θ + sin θ = m …(1)


tan θ – sin θ = n …(2)


As we have to prove: m2 – n2 = 4 sin θ tan θ


∴ if we find out the expression of sin θ and tan θ in terms of m and n, we can get the desired expression to be proved.


∴ Adding equation 1 and 2 to get the value of tan θ.


2 tan θ = m + n …(3)


Similarly, on subtracting equation 2 from 1, we get-


2sin θ = m – n …(4)


Multiplying equation 3 and 4 –


2sin θ (2tan θ) = (m + n)(m – n)


⇒ 4 sin θ tan θ = m2 – n2


Hence,


m2 – n2 = 4 sin θ tan θ



Question 12.

If tan (A + B) = p, tan (A – B) = q, then show that .

[Hint: Use 2A = (A + B) + (A – B)]


Answer:

To prove:


∵ tan 2A = tan (A + B + A – B)


We know that:


∴ tan 2A =


⇒ tan 2A = {according to values given in question}


Hence, tan 2A =



Question 13.

If cosα + cosβ = 0 = sinα + sinβ, then prove that cos 2α + cos 2β = –2cos (α + β).

[Hint: cosα + cosβ)2 – (sinα + sinβ)2 = 0]


Answer:

To Prove: cos 2α + cos 2β = –2cos (α + β)


Given,


cosα + cosβ = 0 = sinα + sinβ …(1)


∵ LHS = cos 2α + cos 2β


We know that: cos 2x = cos2x – sin2x


∴ LHS = cos2α – sin2α + (cos2β – sin2β)


⇒ LHS = cos2α + cos2β – (sin2α + sin2β)


∵ a2 + b2 = (a+b)2 – 2ab


⇒ LHS = (cosα + cosβ)2 – 2cosα cosβ –(sinα + sinβ)2 +2sinα sinβ


⇒ LHS = 0 - 2cosα cosβ -0 + 2sinα sinβ {using equation 1}


⇒ LHS = -2(cosα cosβ – sinα sinβ)


∵ cos (α + β) = cosα cosβ – sinα sinβ


∴ LHS = -2 cos (α + β) = RHS


Hence, cos 2α + cos 2β = –2cos (α + β)



Question 14.

If then show that

[Hint: Use componendo and Dividendo]


Answer:

To prove:


Given,



∵ sin(A+B) = sin A cos B + cos A sin B




Applying componendo-dividendo rule, we get –





{∵ tan A = (sinA)/(cosA)}




Question 15.

If then show that sinα + cosα = √2 cos θ.

[Hint: Express tanθ = tan(α – π/2) θ = α – π/4]


Answer:

Given,



To prove: sinα + cosα = √2 cos θ




{∵ tan A = (sinA)/(cosA)}


{∵ tan π/4 = 1}


We know that: tan(x-y) =



⇒ θ = α - π/4


⇒ α = θ + π/4 …(1)


As we have to prove - sinα + cosα = √2 cos θ


∵ LHS = sinα + cosα


⇒ LHS = sin(θ + π/4) + cos(θ + π/4) {using equation 1}


∵ sin(x + y) = sin x cos y + cos x sin y


And, cos(x + y) = cos x cos y – sin x sin y


∴ LHS = sin θ cos(π/4) + sin(π/4)cos θ + cos θ cos(π/4) - sin(π/4)sin θ


∵ sin(π/4)=cos(π/4) = 1/√2


⇒ LHS =


⇒ LHS =


⇒ LHS = √2 cos θ = RHS


Hence, sinα + cosα = √2 cos θ



Question 16.

If sin θ + cos θ = 1, then find the general value of θ.


Answer:

Given,


sin θ + cos θ = 1


We need to solve the above equation.


If we can convert this to a single trigonometric ratio, we can easily give its solution by using the formula.


∵ sin θ + cos θ = 1



{∵ sin(π/4)=cos(π/4) = 1/√2}


We know that: sin(A+B) = sinAcosB + cosAsinB




Formula to be used: If sin θ = sinα ⇒ θ = nπ + (-1)nα


∴ θ + π/4 = nπ + (-1)n(π/4)


⇒ θ = nπ + (π/4)((-1)n – 1)



Question 17.

Find the most general value of θ satisfying the equation tan θ = –1 and


Answer:

As we need to find the most general solution for two different trigonometric equations.


Tan θ = -1 …(1)


and cos θ = 1/√2 …(2)


Most general value of θ is the common solution of both equation 1 and 2.


Let S1 represents the solution set of equation 1 and S2 be the solution set equation 2.


Let S represents the set of most general value of θ


∴ S = S1 ∩ S2


We know that, solution of tan x = tan α is given by –


x = nπ + α ∀ n ∈ Z


and solution of cos x = cos α is given by


x = 2mπ ± α ∀ m ∈ Z


From equation 1,we have –


tan θ = -1


⇒ tan θ = tan (-π/4)


∴ θ = nπ + (-π/4) = (nπ - π/4) ∀ n ∈ Z …(3)


From equation 2 we have -


cos θ = 1/√2


⇒ cos θ = cos π/4


⇒ θ = 2mπ ± π/4 ∀ m ∈ Z …(4)


From equation 3 we can infer that, solution lies either in 2nd quadrant (when n is odd) and 4th quadrant (when n is even)


From equation 3 we can infer that, solution lies either in 1st or 2nd quadrant irrespective of value of m.


∴ region of common solution is 4th quadrant and n is even in that case.


∴ common solution is given by-


θ = 2mπ - π/4 ∀ m ∈ Z.


The above solution is the most general solution for the given equations.



Question 18.

If cos θ + tan θ = 2 cosec θ, then find the general value of θ.

Correct question: cot θ + tan θ = 2cosecθ


Answer:

Given,



{∵ sin2θ + cos2θ = 1}


⇒ 1 = 2 cosec θ sin θ cos θ


⇒ 1 = 2 cos θ {∵ sin θ cosec θ = 1}


⇒ cos θ = 1/2 = cos(π/3)


∵ solution of cos x = cos α is given by


x = 2mπ ± α ∀ m ∈ Z


⇒ θ = 2nπ ± π/3, n ∈ Z



Question 19.

If 2sin2θ = 3cos θ, where 0 ≤ θ ≤ 2π, then find the value of θ


Answer:

Given,


2sin2θ = 3cos θ


We know that – sin2θ = 1 – cos2θ



∴ 2(1 – cos2θ) = 3cos θ


⇒ 2 – 2cos2θ = 3cos θ


⇒ 2cos2θ + 3cos θ - 2 = 0


⇒ 2cos2θ + 4cos θ - cos θ - 2 = 0


⇒ 2cos θ (cos θ+ 2) +1 (cos θ + 2) = 0


⇒ (2cos θ + 1)(cos θ + 2) = 0


∵ cos θ ∈ [-1,1] , for any value θ.


So, cos θ ≠ - 2


∴ 2 cos θ - 1 = 0


⇒ cos θ = 1/2





Question 20.

If sec x cos 5x + 1 = 0, where 0 < x ≤ π/2, then find the value of x.


Answer:

Given,


sec x cos 5x = -1


⇒ cos 5x = -1/sec x


⇒ cos 5x + cos x = 0 {∵ sec x = 1/cos x}


By transformation formula of T-ratios we know that –


cos A + cos B =



⇒ 2 cos 3x cos 2x = 0


⇒ cos 3x = 0 or cos 2x = 0


∵ 0 < x ≤ π/2


∴ 0< 2x ≤ π or 0< 3x ≤ 3π/2


∴ 2x = π/2


⇒ x = π/4


3x = π/2


⇒ x = π/6


Or 3x = 3π/2


⇒ x = π/2


Hence, x = π/6, π/4.



Question 21.

If sin (θ + α) = a and sin (θ + β) = b, then prove that cos 2(α – β) – 4ab cos (α – β) = 1 – 2a2 – 2b2


Answer:

Given,


sin (θ + α) = a and sin(θ + β) = b


To prove: cos 2(α – β) – 4ab cos (α – β) = 1 – 2a2 – 2b2


As, LHS = cos 2(α – β) – 4ab cos (α – β)


Using: cos 2x = 2cos2x – 1


⇒ LHS = 2cos2(α – β) - 1 – 4ab cos(α – β)


⇒ LHS = 2cos (α – β) {cos (α – β) – 2ab} - 1


It involves cos (α – β) terms so we need to calculate it first.


∵ cos (α – β) = cos {(θ + α) – (θ + β)}


cos (A – B) = cos A cos B + sin A sin B


⇒ cos (α – β) = cos(θ + α)cos(θ + β) + sin(θ + α)sin(θ + β)


∵ sin(θ + α) = a


⇒ cos(θ + α) = √(1 – sin2(θ + α) = √(1 – a2)


Similarly, cos(θ + β) = √(1 – b2)


∴ cos(α – β) = √(1-a2)√(1-b2) + ab


∴ LHS = 2{ab + √(1 – a2)(1 – b2)}{ab + √(1 – a2)(1 – b2) -2ab} - 1


⇒ LHS = 2{√(1 – a2)(1 – b2) + ab}{√(1 – a2)(1 – b2) - ab}-1


Using: (x + y)(x – y) = x2 – y2


⇒ LHS = 2{(1-a2)(1-b2) – a2b2} – 1


⇒ LHS = 2{1 – a2 – b2 + a2b2} – 1


⇒ LHS = 2 – 2a2 – 2b2 – 1


⇒ LHS = 1 – 2a2 – 2b2 = RHS


Thus,


cos 2(α – β) – 4ab cos (α – β) = 1 – 2a2 – 2b2



Question 22.

If cos (θ + ϕ) = m cos (θ – ϕ), then prove that

[Hint: Express and apply Componendo and Dividendo]

Correction required: prove that:


Answer:

Given,


cos (θ + ϕ) = m cos (θ – ϕ)


To prove:


∵ cos (θ + ϕ) = m cos (θ – ϕ)



Applying componendo – dividend, we get



From transformation formula, we know that –


cos(A+B) + cos(A – B) = 2cosAcosB


cos(A – B) – cos(A + B) = 2sinA sinB



{∵ (cos θ)/(sin θ) = cot θ }





Question 23.

Find the value of the expression



Answer:

Let, y =


We know that-


sin(3π/2 – α) = -cos α


sin(3π + α) = -sin α


sin(π/2 + α) = cos α


sin(5π – α) = sin α


∴ y =


⇒ y = 3 [cos4α + sin4α] – 2[sin6α + cos6α]


⇒ y = 3[(sin2α + cos2α)2 – 2sin2α cos2α] – 2[(sin2α)3 + (cos2α)3]


∵ sin2α + cos2α = 1


⇒ y = 3[1 – 2sin2α cos2α] – 2[(sin2α + cos2α)( cos4α + sin4α- sin2α cos2α)] {∵ a3+b3 = (a+b)(a2 – ab + b2)}


⇒ y = 3[1 – 2sin2α cos2α] – 2[cos4α + sin4α- sin2α cos2α]


⇒ y = 3[1 – 2sin2α cos2α] – 2[(sin2α + cos2α)2 – 2sin2α cos2α - sin2α cos2α]


⇒ y = 3[1 – 2sin2α cos2α] – 2[1 – 3sin2α cos2α]


⇒ y = 3 – 6sin2α cos2α – 2 + 6 sin2α cos2α


⇒ y = 1



Question 24.

If a cos2θ + b sin 2θ = c has α and β as its roots, then prove that

[Hint: Use the identities and ]


Answer:

Given,


a cos2θ + b sin 2θ = c and α and β are the roots of the equation.


Using the formula of multiple angles, we know that –


and



⇒ a(1 – tan2θ) + 2b tan θ - c(1 + tan2θ) = 0


⇒ (-c – a)tan2θ + 2b tan θ - c + a = 0 …(1)


Clearly it is a quadratic equation in tan θ and as α and β are its solutions.


∴ tan α and tan β are the roots of this quadratic equation.


We know that sum of roots of a quadratic equation:


ax2 + bx + c = 0 is given by (-b/a)


∴ tan α + tan β =


Hence,



Question 25.

If x = sec ϕ – tan ϕ and y = cosec ϕ + cot ϕ, then show that xy + x – y + 1 = 0.

[Hint: Find xy + 1 and then show tan x – y = –(xy + 1)]


Answer:

Given,


x = sec ϕ – tan ϕ and y = cosec ϕ + cot ϕ


To prove: xy + x – y + 1 = 0


∵ LHS = xy + x – y + 1









{∵ sin2θ + cos2θ = 1}


Thus, LHS = xy + x – y + 1 = 0



Question 26.

If θ lies in the first quadrant and then find the value of cos(30° + θ) + cos (45° – θ) + cos (120° – θ)


Answer:

Given,


cos θ = 8/17


∴ sin θ = ±√(1 – cos2θ)


But θ lies in first quadrant, so only positive sign is considered.


⇒ sin θ = √( 1 – 64/289) = 15/17


Let, y = cos(30° + θ) + cos (45° – θ) + cos (120° – θ)


We know that: cos(x + y) = cos x cos y – sin x sin y


∴ y = cos30° cos θ – sin30° sin θ + cos45° cos θ + sin45°sin θ +cos120° cos θ + sin120° sin θ


Putting values of cos30° ,sin30° ,cos 120° ,sin120° and cos 45°







Question 27.

Find the value of the expression

[Hint: Simplify the expression to =


Answer:

Let, y =


=


∵ cos (π – x) = - cos x















Question 28.

Find the general solution of the equation

5cos2θ + 7sin2θ – 6 = 0


Answer:

Given,


5cos2θ + 7sin2θ – 6 = 0


We know that : sin2θ = 1 – cos2θ


∴ 5cos2θ + 7(1 – cos2θ) – 6 = 0


⇒ 5cos2θ + 7 – 7cos2θ – 6 = 0


⇒ -2cos2θ + 1 = 0


⇒ cos2θ = 1/2


∴ cos θ = ±1√2


∴ cos θ = cos π/4 or cos θ = cos 3π/4


∵ solution of cos x = cos α is given by


x = 2mπ ± α ∀ m ∈ Z


⇒ θ = nπ ± π/4, n ∈ Z



Question 29.

Find the general solution of the equation sin x – 3sin2x + sin3x = cos x – 3cos2x + cos3x


Answer:

Given,


sin x – 3sin2x + sin3x = cos x – 3cos2x + cos3x


To solve the problem we need to apply transformation formula, but we need to group sin x and sin 3x together and similarly cos x and cos 3x in RHS side.


∴ sin x + sin3x – 3sin2x = cos x + cos3x – 3cos2x


Transformation formula:


cos A + cos B =


sin A + sin B =



⇒ 2sin 2x cos x – 3sin 2x = 2cos 2x cos x – 3cos 2x


⇒ 2sin 2x cos x – 3sin 2x - 2cos 2x cos x + 3cos 2x = 0


⇒ 2cos x (sin 2x – cos 2x) -3(sin 2x – cos 2x) = 0


⇒ (sin 2x – cos 2x)(2cos x – 3) = 0


⇒ cos x = 3/2 or sin 2x = cos 2x


As cos x ∈ [-1,1]


∴ no value of x exists for which cos x = 3/2


∴ sin 2x = cos 2x


⇒ tan 2x = 1 = tan π/4


We know solution of tan x = tan α is given by –


x= nπ + α , n ∈ Z


∴ 2x = nπ + (π/4)




Question 30.

Find the general solution of the equation

[Hint: Put which gives ]


Answer:

Given equation is:



We need to solve the above equation.


If we can convert this to a single trigonometric ratio, we can easily give its solution by using the formula.


For this,


Let, r sinα = √3 – 1 and r cosα = √3 + 1



And,


Hence, equation can be rewritten as-


∴ r(sinα cos θ + r cosα sin θ) = 2


⇒ 2√2 sin (θ + α) = 2


⇒ sin(θ + α) = 1/√2 = sin π/4


We know that: General solution of trigonometric equation


sin x = sin α is given as –


x = nπ + (-1)nα , n ∈ Z


∴ θ + α = nπ + (-1)n(π/4)


⇒ θ = {nπ + (-1)n(π/4) – α} ,where tan α = and n ∈ Z



Question 31.

If sin θ + cosec θ = 2, then sin2θ + cosec2θ is equal to
A. 1

B.4

C. 2

D. None of these


Answer:

Given that, sin θ + cosec θ = 2


Squaring both sides, we get


⇒ (sin θ + cosec θ)2 = 22


⇒ sin2θ + cosec2θ + 2 sin θ cosec θ = 4



⇒ sin2θ + cosec2θ + 2 = 4


⇒ sin2θ + cosec2θ = 2


Question 32.

If f(x) = cos2x + sec2x, then
A. f(x) < 1

B. f(x) = 1

C. 2 < f(x) < 1

D. f(x) ≥ 2

[Hint: A.M ≥ G.M.]


Answer:

We have, f(x) = cos2x + sec2x


We know that, A.M ≥ G.M.





⇒ cos02x + sec2x ≥ 2


⇒ f(x) ≥ 2


Question 33.

If tan θ = 1/2 and tan ϕ = 1/3, then the value of θ + ϕ is
A. π/6

B. π

C. 0

D. π/4


Answer:

We have,


We know that,






Question 34.

The value of tan 1° tan 2° tan 3°… tan 89° is
A. 0

B. 1

C. 1/2

D. Not defined


Answer:

tan 1° tan 2° tan 3°… tan 89°


= tan 1° tan 2° … tan 45° tan (90-44°) tan(90-43°)…tan (90-1°)


= tan 1°tan 2° … tan 45°cot 44°cot 43°…cot 1° [∵tan (90-θ)=cot θ]


= tan 1° cot 1° tan 2° cot 2°…tan45°… tan 89° cot 89°


=1.1….1 = 1


Question 35.

The value of is
A. 1

B.

C.

D. 2


Answer:

Let θ = 15° ⇒ 2θ = 30°


We know that,





Question 36.

The value of cos 1° cos 2° cos 3°… cos 179° is
A.

B. 0

C. 1

D. –1


Answer:

Since cos90° =0


⇒ cos 1° cos 2° cos 3°… cos90°… cos 179° = 0


Question 37.

If tan θ = 3 and θ lies in third quadrant, then the value of sin θ is
A.

B.

C.

D.


Answer:

Given that, tan θ = 3 and θ lies in third quadrant



We know that,


Cosec2θ = 1+cot2θ






Question 38.

The value of tan 75°– cot 75° is equal to
A.

B.

C.

D. 1


Answer:

Given that, tan 75°– cot 75°






= -2cot150°


= -2 cot (180°-30°)


= 2cot30°


=2√3


Question 39.

Which of the following is correct?
A. sin 1°> sin 1

B. sin 1°< sin 1

C. sin 1° = sin 1

D.

[Hint: 1 radian = 180°/π = 57°30’ approx.]


Answer:

We know that,


57° lies between 0 and 90 degrees and since in first quadrant sin θ increases when θ increases.


⇒ sin 1°< sin 1


Question 40.

If then α + β is equal to
A.

B.

C.

D.


Answer:

Given that,


Now,





Question 41.

The minimum value of 3 cos x + 4 sin x + 8 is
A. 5

B. 9

C. 7

D. 3


Answer:

Let y = 3 cos x + 4 sin x + 8


⇒ y-8 = 3 cos x + 4 sin x


We know that, minimum value of A cos θ +Bsin θ = -√(A2+B2)


⇒ y-8 = - √(32+42) = -√25 = -5


⇒ y = -5+8


= 3


Question 42.

The value of tan 3A – tan 2A –tan A is equal to
A. tan 3A tan 2A tan A

B. – tan 3A tan 2A tan A

C. tan A tan 2A – tan 2A tan 3A – tan 3A tan A

D. None of these


Answer:

tan 3A = tan(2A+A)



⇒ tan 3A(1-tan 2A.tan A) = tan 2A + tan A


⇒ tan 3A-tan 3A.tan 2A.tan A = tan 2A + tan A


⇒ tan 3A- tan 2A - tan A = tan 3A.tan 2A.tan A


Question 43.

The value of sin (45° + θ) – cos (45°–θ) is
A. 2 cos θ

B. 2sin θ

C. 1

D. 0


Answer:

We have, sin (45° + θ) – cos (45°–θ)


= sin (45° + θ) - sin (90° -(45° - θ))


= sin (45° + θ) - sin (45° + θ)


= 0.


Question 44.

The value of is
A. –1

B. 0

C. 1

D. Not defined


Answer:

We have,






Question 45.

cos 2θ cos 2ϕ + sin2(θ–ϕ) – sin2(θ + ϕ) is equal to
A. sin 2(θ + ϕ)

B. cos 2(θ + ϕ)

C. sin 2(θ–ϕ)

D. cos 2(θ–ϕ)

[Hint: Use sin2A – sin2B = sin (A + B) sin (A – B)]


Answer:

Given that, cos 2θ cos 2ϕ + sin2(θ–ϕ) – sin2(θ + ϕ)


= cos 2θ cos 2ϕ + sin(θ–ϕ+ θ + ϕ)sin(θ–ϕ- θ – ϕ)


[∵sin2A – sin2B = sin (A + B) sin (A – B)]


= cos 2θ cos 2ϕ + sin 2θ. sin(- 2ϕ)


= cos 2θ cos 2ϕ - sin 2θ. Sin 2ϕ [∵ sin(-θ) = -sin θ]


= cos 2(θ + ϕ) [∵ cos x cos y – sin x sin y = cos(x + y)]


Question 46.

The value of cos 12° + cos 84° + cos 156° + cos 132° is
A.

B. 1

C.

D.


Answer:

We have, cos 12° + cos 84° + cos 156° + cos 132°


= (cos 132°+ cos 12°) + (cos 156° + cos 84°)



= 2 cos72°.cos60° + 2 cos120°.cos36°



= cos72° - cos36°


= cos(90° -18°) – cos36°


= sin 18° - cos36°






Question 47.

If then tan (2A + B) is equal to
A. 1

B. 2

C. 3

D. 4


Answer:

Given that,


We know that.


Now,





=3


Question 48.

The value of is
A.

B.

C.

D. 1

[Hint: Use ]


Answer:

We have,



=-sin18° sin(90° - 36°)


=-sin18° cos36°





Question 49.

The value of sin 50°– sin 70° + sin 10° is equal to
A. 1

B. 0

C.

D. 2


Answer:

We have, sin 50°– sin 70° + sin 10°



=2cos60° (-sin10°) + sin10°



=-sin10° + sin10°


= 0


Question 50.

If sin θ + cos θ = 1, then the value of sin 2θ is equal to
A. 1

B.

C. 0

D. –1


Answer:

Given that, sin θ + cos θ = 1


Squaring both sides, we get


⇒ (sin θ + cos θ)2 = 1


⇒ sin2θ + cos2θ + 2sin θ cos θ = 1


⇒ 1 + sin2θ = 1


⇒ sin2θ = 1-1


= 0


Question 51.

If then the value of (1+ tanα) (1 + tanβ) is
A. 1

B. 2

C. –2

D. Not defined


Answer:

We have,




⇒ tanα + tanβ = 1- tanα. tanβ


⇒ tanα + tanβ + tanα.tanβ = 1


On adding 1 both sides, we get


⇒1+ tanα + tanβ + tanα. tanβ = 1+1


⇒1(1+ tanα) + tanβ (1 + tanα) = 2


⇒ (1+ tanα) (1 + tanβ) = 2


Question 52.

If and θ lies in third quadrant then the value of is
A.

B.

C.

D.


Answer:

Given that, and θ lies in third quadrant.







since θ lies in third quadrant









Question 53.

Number of solutions of the equation tan x + sec x = 2 cos x lying in the interval [0, 2π] is
A. 0

B. 1

C. 2

D. 3


Answer:

We have, tan x + sec x = 2 cos x



⇒ 1+sin x = 2cos2x


⇒ 2cos2x-sin x-1 = 0


⇒ 2(1-sin2x)-sin x-1 = 0


⇒ 2-2sin2x-sin x-1 = 0


⇒ 2sin2x+sin x-1 = 0


Since, the equation is a quadratic equation in sin x, it will have 2 solutions.


Question 54.

The value of is given by
A.

B. 1

C.

D.


Answer:

Given that,









Question 55.

If A lies in the second quadrant and 3 tan A + 4 = 0, then the value of 2 cot A– 5 cos A + sinA is equal to
A.

B.

C.

D.


Answer:

We have, 3 tan A + 4 = 0, A lies in second quadrant.



since A lie in second quadrant.


Now, 2 cot A– 5 cos A + sinA






Question 56.

The value of cos2 48°– sin2 12° is
A.

B.

C.

D.

[Hint: Use cos2A – sin2B = cos (A + B) cos (A – B)]


Answer:

Given that, cos2 48°– sin2 12° = cos (48° + 12°) cos (48° – 12°)


[∵cos2A – sin2B = cos (A + B) cos (A – B)]


= cos60° cos36°




Question 57.

If then cos 2α is equal to
A. sin 2β

B. sin 4β

C. sin 2β

D. cos 2β


Answer:

Given that,






…. (i)


Now







….. (ii)













…. (iii)






…… (iv)


Hence, from (i) and (iii)


Cos2α = sin4β


Question 58.

If then b cos 2θ + a sin 2θ is equal to
A. a

B. b

C.

D. None


Answer:

Given that,


Now,













=b


Question 59.

If for real values of x, then
A. θ is an acute angle

B. θ is right angle

C. θ is an obtuse angle

D. No value of θ is possible


Answer:

Given that,



⇒ x2+1 = x cos θ


⇒ x2- cos θx +1 = 0


We know that, b2-4ac ≥ 0


⇒ (-cos θ)2-4×1×1 ≥ 0


⇒ cos2θ -4 ≥ 0


⇒ cos2θ ≥ 4


⇒ cos θ ≥ ± 2


But -1 ≤ cos θ ≤ 1


So, no value of θ is possible


Question 60.

Fill in the blanks

The value of is _______.


Answer:



=1



Question 61.

Fill in the blanks

If then the numerical value of k is _________.


Answer:

Given that,


⇒ k = sin 10° sin 50° sin 70°


= sin 10° sin (90° - 40°). sin (90° - 20°)


= sin 10° cos 40° cos 20°



[∵ 2 cos x cos y = cos(x + y)+cos(x-y)]







[∵ 2 sin x cos y = sin (x + y)+sin(x-y)]






Question 62.

Fill in the blanks

If then tan 2A = _______.


Answer:

Given that,


Now,






= tan B


⇒ tan 2A = tan B



Question 63.

Fill in the blanks

If sin x + cos x = a, then

(i) sin6 x + cos6x = _______

(ii) |sin x – cos x| = ______.


Answer:

Given that, sin x + cos x = a


Squaring both sides, we get


(sin x + cos x)2 = a2


⇒ sin2x + cos2x + 2sin x cos x = a2


⇒ 1 + 2sin x cos x = a2



(i) sin6 x + cos6x = (sin2x)3 + (cos2x)3


= (sin2x+ cos2x)3 -3 sin2x cos2x(sin2x+ cos2x)






(ii) |sin x – cos x| =


|sin x – cos x|2 = sin2x + cos2x - 2sin x cos x



=1-(a2 -1)


= 1-a2+1 = 2- a2


⇒ |sin x – cos x| =



Question 64.

Fill in the blanks

In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ________.

[Hint: A + B = 90°⇒ tan A tan B = 1 and tan A + tan B ]


Answer:

Given that, a ΔABC with ∠C = 90° and an equation whose roots are tan A and tan B


⇒ x2 – (tan A + tan B)x + tan A. tan B = 0 (i)


Now, A+B = 90° [∵ ∠C = 90°]


⇒ tan(A+B) = tan90°



⇒ 1-tan A tan B = 0


⇒ tan A tan B = 1 (ii)


Now,







Substituting the values from (ii) and (iii) in equation (i), we get




Question 65.

Fill in the blanks

3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4(sin6 x + cos6 x) = _______.


Answer:

We have, 3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4(sin6 x + cos6 x)


=3(sin2x+cos2x-2sin x cos x)2+6(sin2x+cos2x+2sin x cos x) +4[(sin2x)3 + (cos2x)3]


=3(1-2sin x cos x)2+6(1+2sin x cos x) +4[(sin2x+ cos2x)3 -3 sin2x cos2x(sin2x+ cos2x)]


=3(1+4 sin2x cos2x-4sin x cos x) +6+12sin x cos x+4-12sin2x cos2x


=3+12 sin2x cos2x-12 sin x cos x+6+12sin x cos x+4-12sin2x cos2x


=3+6+4


= 13



Question 66.

Fill in the blanks

Given x > 0, the values of lie in the interval _______.


Answer:

We have,


Let


∴ f(x) = -3cosy


We know that, -1 ≤ cos y ≤ 1


⇒ -3 ≤ 3cosy ≤ 3


⇒ 3 ≥ -3cosy ≥ -3


⇒ -3 ≤ -3cosy ≤ 3



Hence,



Question 67.

Fill in the blanks

The maximum distance of a point on the graph of the function from x-axis is _____.


Answer:

We have, y = √3 sin x + cos x


The maximum distance of a point on the graph of the function y = √3 sin x+cos x from x-axis is




=2



Question 68.

True and False

If then tan 2A = tan B.


Answer:

True

Explanation:


We have,




⇒ tan 2A = tan B



Question 69.

True and False

The equality sin A + sin 2A + sin 3A = 3 holds for some real value of A.


Answer:

False

Explanation:


We know that, maximum value of sin A is 1.


Given that, sin A + sin 2A + sin 3A = 3


It is possible when sin A = sin 2A = sin 3A=1


But sin2A and sin3A is not equal to 1.


Hence, statement is false.



Question 70.

True and False

sin 10° is greater than cos 10°.


Answer:

False

Explanation:


Let, sin 10° > cos 10°


⇒ sin 10° > cos (90° - 80°)


⇒ sin 10° > sin80°


Which is not possible since value of sin increases with increase in θ.


Hence, statement is false.



Question 71.

True and False



Answer:

True

Explanation:


We have,


=cos24° cos48° cos96° cos192°













=RHS



Question 72.

True and False

One value of θ which satisfies the equation sin4θ – 2sin2θ – 1 lies between 0 and 2π.


Answer:

False

Explanation:


We have, sin4θ – 2sin2θ – 1 = 0


Now,




⇒ sin2θ = 1±√2


⇒ sin2θ = 1+√2 or 1-√2


We know that, -1≤ sin θ ≤ 1


⇒ sin2θ ≤ 1


but sin2θ = 1+√2 or 1-√2


Which is not possible.


Hence, the above statement is false.



Question 73.

True and False

If cosec x = 1 + cot x then


Answer:

True

Explanation:


We have, cosec x = 1 + cot x




⇒ sin x+cos x = 1







=2nπ


Hence, statement is true.



Question 74.

True and False

If tan θ + tan 2θ + tan θ tan 2θ = , then


Answer:

True

Explanation:


We have, tan θ + tan 2θ + tan θ tan 2θ =


tan θ + tan 2θ = -√3 tan θ tan2θ +√3


tan θ + tan 2θ = √3(1- tan θ tan2θ)



⇒ tan(θ +2θ )=√3






Question 75.

True and False

If tan(π cos θ) = cot (π sin θ), then


Answer:

True

Explanation:


We have, tan(π cos θ) = cot (π sin θ)










Question 76.

In the following match each item given under the column C1 to its correct answer given under the column C2:


Answer:

(a) sin (x + y) sin(x – y)


= (sin x.cos y + sin y.cos x)( sin x.cos y - sin y.cos x)


= sin2x cos2y+ sin y.cos x. sin x.cos y- sin x.cos y sin y.cos x- sin2y cos2x


= sin2x cos2y- sin2y cos2x


= sin2x(1- sin2y)- sin2y(1- sin2x)


= sin2x- sin2x sin2y- sin2y+ sin2x sin2y


= sin2x – sin2y


⇒ (a) matches with (iv)


(b) cos(x + y) cos(x – y)


= (cos x.cos y−sin x.sin y)( cos x.cosy+sin x.siny)


= (cos2x cos2y+ cos x.cos y sin x.siny- sin x.sin y cos x.cosy- sin2x sin2y)


= cos2x cos2y- sin2x sin2y


= cos2x(1- sin2y)-(1- cos2x) sin2y


= cos2x- cos2x sin2y- sin2y+ cos2x sin2y


= cos2x – sin2y


⇒ (b) matches with (i)


(c)






⇒ (c) matches with (ii)


(c)



⇒ (d) matches with (iii)