Buy BOOKS at Discounted Price

Trigonometric Ratios And Identities

Class 10th Mathematics KC Sinha Solution
Exercise 4.1
  1. From the given figure, find the value of the following: a 3 square b) (i) sin C…
  2. From the given figure, find the value of : (i) tan θ (ii) cos θ
  3. From the given figure, find the value of (i) sin θ (ii) tan θ (iii) tan A - cot…
  4. In ∆ABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine a. sin A, cos A b.…
  5. Consider ∆ACB, right angled at C, in which AB = 29 units, BC = 21 units and…
  6. In ∆ABC, ∠A is a right angle, then find the values of sin B, cos C and tan B in…
  7. Find the value of the following : (a) sin θ (b) cos θ (c) tan θ from the…
  8. Find the value of the following : (a) sin θ (b) cos θ (c) tan θ from the…
  9. In ∆PQR, ∠Q is a right angle PQ = 3, QR = 4. If ∠P=α and ∠R=β, then find the…
  10. If sintegrate heta = 4/5 then find the values of cos θ and tan θ.…
  11. If sina = 3/4 calculate cos A and tan A.
  12. If sintegrate heta = 3/5 then find the values cos θ and tan θ.
  13. If costheta = 4/5 then find the value of tan θ.
  14. If tantheta = 3/4 then find the values of cos θ and sin θ.
  15. If tan A= 4/3. Find the other trigonometric ratios of the angle A.…
  16. If cot theta = 12/5 , then find the value of sin θ.
  17. If tan theta = 5/12 , then find the value of cos θ.
  18. If sin theta = 12/13 , then find the value of cos θ and tan θ.
  19. If tan θ =0.75, then find the value of sin θ.
  20. If tan B= √3, then find the values of sin B and cos B.
  21. If tantheta = m/n , then find the values of cos θ and sin θ.
  22. If sin θ = √3 cos θ, then find the values of cos θ and sin θ.
  23. If cottheta = 21/20 , then find the values of cos θ and sin θ.
  24. If 15 cot A=18, find sin A and sec A.
  25. If sin θ = cos θ and 0° θ 90°, then find the values of sin θ and cos θ.…
  26. If sintegrate heta = x^2 - y^2/x^2 + y^2 , then find the values of cos θ and…
  27. If tantheta = root m^2 - n^2/n , then find the values of sin θ and cos θ.…
  28. If sec θ = 2, then find the values of other t-ratios of angle θ.
  29. Given sectheta = 13/12 calculate all other trigonometric ratios.
  30. If cosectheta = root 10 , then find the values of other t-ratios of angle θ.…
  31. If tana = root 3/2 then find the values of sin A + cos A.
  32. If sintegrate heta = root 3 costheta find the value of cos θ - sin θ.…
  33. If tantheta = 8/15 , find the value of 1+ cos^2 θ.
  34. If cottheta = 7/8 , evaluate (i) (1+sintegrate heta) (1-sintegrate…
  35. If 3 cot A = 4, check whether 1-tan^2a/1+tan^2a =cos^2 A-sin^2 A or not.…
  36. In a right triangle ABC, right angled at B, if tan A = 1, then verify that 2…
  37. If 4sin^2 θ =3 and 0o θ 90o, find the value of 1 + cos θ.
  38. If tantheta = p/q find the value of psi ntheta -qcostheta /psi ntheta…
  39. If 13 cos θ = 5, sintegrate heta +costheta /sintegrate heta -costheta .…
  40. If sectheta = 13/5 , show that 2sintegrate heta -3costheta /4sintegrate heta…
  41. If 2 tan θ = 1, find the value of 3costheta +sintegrate heta /2costheta…
  42. If 5 tan α = 4, show that 5sinalpha -3cosalpha /5sinalpha +2cosalpha = 1/6 .…
  43. If cottheta = 3/4 prove that root sectheta +cosectheta /sectheta -cosectheta =…
  44. If cottheta = 1/root 3 verify that: 1-cos^2theta /2-sin^2theta = 3/5 .…
  45. If tantheta = x/y find the value of x sin θ + y cos θ.
  46. If sintegrate heta = 3/5 , find the value of tan^2 θ + sinθ cosθ + cotθ.…
  47. If 4cot θ = 3, show that sintegrate heta +costheta /sintegrate heta -costheta =…
  48. If sintegrate heta = m/root m^2 + n^2 , prove that msintegrate heta +ncostheta…
  49. If cosalpha = 12/13 show that sinalpha (1-tanalpha) = 35/156
  50. If qcostheta = root q^2 - p^2 , prove that q sin θ = p.
  51. If sintegrate heta = 3/5 , show that : costheta - 1/tantheta /2cottheta = - 1/5…
  52. cos A sin B + sin A. cos B, if sin A= 4/5 and cos B = 12/13. Find the value of…
  53. sin A. cos B - cos A. sin B, if tan A= √3 and sin B = 1/2. Find the value of…
  54. sin A. cos B + cos A. sin B. if tana = 1/root 3 and tan B = √3. Find the value…
  55. tana+tanb/1-tana tanb , if sin A = 1/root 2 and cos B= root 3/2 Find the value…
  56. sec A. tan A+tan^2 A - cosec A, if tan A =2 Find the value of
  57. 1/tana + sina/1+cosa , if cosec A = 2 Find the value of
  58. If sinb = 1/2 , prove that : 3 cos B - 4cos^3 B = 0
  59. If costheta = root 3/2 , prove that: 3sinθ - 4sin^3 θ = 1.
  60. If sectheta = 5/4 , prove that : tantheta /1+tan^2theta = sintegrate heta…
  61. cotb = 12/5 , prove that : tan^2 B - sin^2 B=sin^4 B sec^2 B.
  62. If costheta = q/root p^2 + q^2 , prove that (root p^2 + q^2/p + q/p)^2 = root…
  63. In the given figure, BC = 15 cm and sin B = 4/5, show that tan^2b - 1/cos^2b =…
  64. In the given figure, find 3 tan θ - 2 sin α + 4 cos α.
  65. In the given figure μ ABC is right angled at B and BD is perpendicular to AC.…
  66. If 5 sin^2 θ + cos^2 θ = 2, find the value of sin θ.
  67. If 7 sin^2 θ + 3 cos^2 θ =4, find the value of tan θ.
  68. If 4 cos θ + 3 sin θ = 5, find the value of tan θ.
  69. If 7 sin A + 24 cos A = 25, find the value of tan A.
  70. If 9 sin θ + 40 cos θ= 41, find the value of cos θ and cosec θ
  71. If tan A + sec A = 3, find the value of sin A.
  72. If cosec A + cot A = 5, find the value of cos A.
  73. If tan θ + sec θ = x, show that sin θ= x^2 - 1/x^2 + 1
  74. If cos θ +sin θ=1, prove that cos θ - sin θ = ± 1
Exercise 4.2
  1. Find the value of the following : (i) sin 30o + cos 60o (ii) sin^2 45o+cos^2 45o…
  2. If θ = 45°, find the value of (i) tan^2theta + 1/sin^2theta (ii) cos^2 θ - sin^2…
  3. sin45°.cos45° - sin^2 30°. Find the numerical value of the following :…
  4. tan60^circle /sin60^circle + cos60^circle Find the numerical value of the…
  5. tan60^circle /sin60^circle + cos30^circle Find the numerical value of the…
  6. 4/sin^260^circle + 3/cos^260^circle Find the numerical value of the following :…
  7. sin^2 60° - cos^2 60° Find the numerical value of the following :…
  8. 4sin^2 30° + 3 tan 30° - 8 sin 45° cos 45° Find the numerical value of the…
  9. 2sin^2 30° - 3cos^2 45° + tan^2 60ׄ° Find the numerical value of the following…
  10. sin 90° + cos 0° + sin 30° + cos 60° Find the numerical value of the following…
  11. sin 90° - cos 0° + tan 0° + tan 45° Find the numerical value of the following :…
  12. cos^20^circle + tan^2 pi /4 + sin^2 pi /4 where π = 180° Find the numerical…
  13. cos60^circle /sin^245^circle - 3cot45^circle + 2sin90^circle Find the numerical…
  14. 4/tan^260^circle + 1/cos^230^circle - sin^245^circle Find the numerical value…
  15. cos60° . cos 30° - sin 60° . sin 30° Find the numerical value of the following…
  16. 4 (sin^260^circle - cos^245^circle)/tan^230^circle + cos^290^circle Find the…
  17. sin30°.cos45° + cos30°.sin45° Evaluate the following :
  18. cosec^2 30°.tan^2 45° - sec^2 60° Evaluate the following :
  19. 2sin^2 30°.tan60° - 3cos^2 60°.sec^2 30° Evaluate the following :…
  20. tan60° . cosec^2 45° + sec^2 60°.tan45° Evaluate the following :
  21. tan30°.sec45° + tan60°.sin30° Evaluate the following :
  22. cos30°.cos45° - sin30°.sin45° Evaluate the following :
  23. 4/3 tan^230^circle + sin^260^circle - 3cos^260^circle + 3/4 tan^260^circle -…
  24. tan^260^circle + 4cos^245^circle + 3sec^230^circle + 5cos^290^circle…
  25. 5sin^230^circle + cos^245^circle - 4tan^230^circle /2sin30^circle cos30^circle…
  26. (1-cosalpha) (1+cosalpha)/(1-sinalpha) (1+sinalpha) = 3 When α =60° Prove the…
  27. cos(A - B) = cos A. cos B + sinA . sin B if A=B=60o Prove the following :…
  28. 4(sin^4 30° + cos^4 60°) - 3(cos^2 45° - sin^2 90°) = 2 Prove the following :…
  29. sin90° = 2sin45°.cos45° Prove the following :
  30. cos60° = 2cos^2 30° - 1 = 1 - 2 sin^2 30° Prove the following :
  31. cos90° = 1 - 2 sin^2 45° = 2cos^2 45° - 1 Prove the following :
  32. sin30°.cos60° + cos30°.sin60° = sin90° Prove the following :
  33. cos60°.cos30° - sin60°. sin30° = cos 90° Prove the following :
  34. cos60^circle = 1-tan^230^circle /1+tan^230^circle Prove the following :…
  35. tan60^circle - tan30^circle /1+tan60^circle tan30^circle = tan30^circle Prove…
  36. 1-tan30^circle /1+tan30^circle = 1-sin60^circle /cos60^circle Prove the…
  37. sin60^circle + cos30^circle /sin30^circle + cos60^circle + 1 = cos30^circle…
  38. sin60^circle = 2sin30^circle cos30^circle = 2tan30^circle /1+tan^230^circle…
  39. cos (A+B) = cos A cos B - sin A sin B If A=60o and B = 30o, verify that :…
  40. sin (A - B) = sin A cos B - cos A sin B If A=60o and B = 30o, verify that :…
  41. tan (A - B) = tana-tanb/1+tanatanb If A=60o and B = 30o, verify that :…
  42. sin 2A = 2 sin A cos A If A = 30o, verify that :
  43. cos 2A = 1-2 sin^2 A=2cos^2 A - 1 If A = 30o, verify that :
  44. sin 3θ = 3 sinθ - 4 sin^3 θ If θ = 30°, verify that :
  45. cos3θ = 4cos^3 θ - 3cosθ If θ = 30°, verify that :
  46. If sin (A + B) = 1 and cos (A - B) = root 3/2 , then find A and B.…
  47. If sin (A + B) = 1 and cos (A - B) = 1, find A and B.
  48. If sin (A + B) = cos (A - B) = root 3/2 , fins A and B.
  49. If sin (A - B) = 1/2, cos(A + B) = 1/2; 0oA+B90o; A B, find A and B.…
  50. cos A - cos B ≠ cos (A - B) Show by an example that
  51. cos C + cos D ≠ cos (C + D) Show by an example that
  52. sin A + sin B ≠ sin (A + B) Show by an example that
  53. sin A - sin B ≠ sin (A - B) Show by an example that
  54. In a right hypotenuse AC = 10 cm and ∠A = 60°, then find the length of the…
  55. In a rectangle ABCD, BD : BC = 2 : √3, then find ∠BDC in degrees.…
Exercise 4.3
  1. Express the following as trigonometric ratio of complementary angle of θ. (i)…
  2. Express the following as trigonometric ratio of complementary angle of 90o- θ.…
  3. Fill up the blanks by an angle between 0oand 90o: (i) sin 70o = cos(…) (ii) sin…
  4. If A+B=90o, then fill up the blanks with suitable trigonometric ratio of…
  5. If sin 37o=a, then express cos 53o in terms of a.
  6. If cos 47o=a, then express sin 43o in terms of a.
  7. If sin 52o=a, then express sin 38o in terms of a.
  8. If sin 56o=x, then express sin 34o in terms of x.
  9. Find the value of (i) cos59^circle /sin31^circle (ii) cos53^circle /sin37^circle…
  10. Fill up the blanks : (i) If sin 50o=0.7660, then cos 40o=…… (ii) If cos 44o =…
  11. If A + B = 90o, then express cos B in terms of simplest trigonometric ratio of…
  12. If X + Y = 90o, then express cos X in terms of simplest trigonometric ratio of…
  13. If A + B = 90o, sin A = a, sin B = b, then prove that (a) a^2 + b^2 = 1 (b)…
  14. Show that sin(50° + θ) - cos (40° - θ) = 0.
  15. Prove that costheta /sin (90^circle - theta) + sintegrate heta /cos (90^circle…
  16. sin b+c/2 = cos a/2 In a ∆ABC prove that
  17. tan b+c/2 = cot a/2 In a ∆ABC prove that
  18. cos a+b/2 = sin c/2 In a ∆ABC prove that
  19. If sin 3A = cos(A - 26o), where 3A is an acute angle, find the value of A.…
  20. Find θ if cos(2 θ +54o)= sin θ, where (2θ +54o) is an acute angle.…
  21. If tan 3 θ =cot (θ +18o), where 3 θ and θ +18o are acute angles, find the…
  22. If sec 5 θ =cosec (θ -36o), where 5 θ is an acute angle, find the value of θ.…
  23. sin 70o. sec 20o=1 Prove that :
  24. sin (90o- θ) tan θ=sin θ Prove that :
  25. tan 63o. tan 27o=1 Prove that :
  26. sin (90^circle - theta) sintegrate heta /tantheta -1 = - sin^2theta Prove that…
  27. sin 55o. cos 48o=cos35o. sin 42o Prove that :
  28. sin^2 25o+sin^2 65° = cos^2 63°+cos^2 39o Prove that :
  29. sin 54o+cos67o= sin23o+cos36o Prove that :
  30. cos 27+ sin51o = sin63o+cos 39o Prove that :
  31. sin^2 40o+sin^2 50o=1 Prove that :
  32. sin^2 29o + sin^2 61o=1 Prove that :
  33. sin θ .cos (90° - θ) + cos θ sin (90° - θ). Prove that :
  34. cos θ . cos(90° - θ) + sin θ sin (90° - θ) = 0 Prove that :
  35. sin 42°. cos 48° + cos 42° . sin 48° = 1 Prove that :
  36. cos20^circle /sin70^circle + costheta /sin (90^circle - theta) = 2 Prove that :…
  37. tan 27° tan 45° tan 63° Prove that :
  38. tan 9°. tan 27°. tan 45°. tan 63°. tan 81° = 1 Prove that :
  39. sin 9°. sin 27°. sin 63°. sin 81° = cos9°.cos27°.cos63°.cos81° Prove that :…
  40. tan7^circle tan23^circle tan60^circle tan67^circle . tan83^circle = root 3…
  41. tan15^circle tan25^circle tan60^circle tan65^circle tan75^circle = root 3…
  42. sin50^circle /cos40^circle + cosec40^circle /sec50^circle - 4cos50^circle…
  43. cos^220^circle + cos^270^circle /sin^259^circle + sin^231^circle + sin35^circle…
  44. tan50^circle + sec50^circle /cot40^circle + cosect0^circle + cos40^circle…
  45. cosec (65° + θ) - sec (25° - θ) - tan(55° - θ) + cot(35° +θ) Find the value off…
  46. cos35^circle /sin55^circle + sin11^circle /cos79^circle - cos28^circle…
  47. cos^220^circle + cos^270^circle /sin^259^circle + sin^231^circle Find the value…
  48. cosec (65° + θ) - sec (25° - θ) Find the value off the following:…
  49. cos (60° + θ) - sin (30° - θ) Find the value off the following:
  50. sec 70°. sin 20° - cos 20°. cosec 70° Find the value off the following:…
  51. (sin 72° + cos 18°)(sin 72° - cos 18°) Find the value off the following:…
  52. (sin35^circle /cos55^circle)^2 + (cos55^circle /sin35^circle) - 2cos60^circle…
  53. cos80^circle /sin10^circle + cos59^circle cosec31^circle Find the value off the…
  54. (sin 50° + θ)- cos (40° - θ) + tan 1°. tan 10° tan 20°. tan 70°. tan 80°. tan…
  55. sec^210^circle - cot^280^circle + sin15^circle cos75^circle + cos15^circle…
  56. cos (40^circle + theta) - sin (50^circle - theta) + cos^240^circle +…
  57. cos70^circle /sin20^circle + cos55^circle , cosec35^circle /tan5^circle…
  58. (sin27^circle /cos63^circle)^2 + (cos63^circle /sin27^circle)^2 Find the value…
  59. 3sin5^circle /cos85^circle + 2cos33^circle /sin57^circle Evaluate the…
  60. cot54^circle /tan36^circle + tan20^circle /cot70^circle - 2 Evaluate the…
  61. cos80^circle /sin10^circle + cos59^circle cosec31^circle Evaluate the…
  62. cos38° cos52° - sin38° sin 52° Evaluate the following
  63. sec41° sin49° + cos49° cosec 41° Evaluate the following
Exercise 4.4
  1. Fill in the blanks (i) sin^2 θ cosec^2 θ = …….. (ii) 1 + tan^2 θ = …… (iii)…
  2. If sin θ= p and cos θ = q, what is the relation between p and q ?…
  3. If cos A = x, express sin A in terms of x
  4. If x cos θ = 1 and y sin θ = 1 find the value of tan θ.
  5. If cos40o = p, then write the value of sin 40o in terms of p.
  6. If sin 77° = x, then write the value of cos 77o in terms of x.
  7. If cos55° = x^2 , then write the value of sin 55o in terms of x.
  8. If, sin 50° = α then write the value of cos 50° in terms of α.
  9. If x cos A = 1 and tan A = y, then what is the value of x^2 - y^2 .…
  10. (1 - sin θ)(1 + sin θ) = cso^2 θ Prove the followings identities:…
  11. (1 + cos θ)(1 - cos θ) = sin^2 θ Prove the followings identities:…
  12. (1-costheta) (1+costheta)/(1-sintegrate heta) (1+sintegrate heta) = tan^2theta…
  13. 1/sectheta +tantheta = sectheta -tantheta Prove the followings identities:…
  14. sinθ. cotθ = cos θ Prove the following identities :
  15. sin^2 θ(1+ cot^2 θ) = 1 Prove the following identities :
  16. cos^2 A (tan^2 A+1) = 1 Prove the following identities :
  17. tan^4 θ + tan^2 θ = sec^4 θ - sec^2 θ Prove the following identities :…
  18. (1+tan^2theta) sin^2theta /tantheta = tantheta Prove the following identities…
  19. sin^2theta /cos^2theta +1 = tan^2theta /sin^2theta Prove the following…
  20. 3-4sin^2theta /cos^2theta = 3-tan^2theta Prove the following identities :…
  21. (1+ tan^2 θ) cos θ. sin θ = tan θ Prove the following identities :…
  22. sin^2 θ - cos^2 ϕ = sin^2 ϕ - cos^2 θ Prove the following identities :…
  23. 1-tan^2theta /cot^2theta -1 = tan^2theta Prove the following identities :…
  24. (1 - cosθ)(1+ cosθ)(1+ cot^2 θ) = 1 Prove the following identities :…
  25. (1+sintegrate heta)^2 + (1-sintegrate heta)^2/2cos^2theta = 1+sin^2theta…
  26. cos^2theta (1-costheta)/sin^2theta (1-sintegrate heta) = 1+sintegrate heta…
  27. (sin θ - cos θ)^2 = 1 - 2 sinθ . cos θ Prove the following identities :…
  28. (sin θ + cos θ)^2 + (sin θ - cos θ)^2 = 2 Prove the following identities :…
  29. (asin θ + bcos θ)^2 + (acos θ - bsin θ)^2 = a^2 + b^2 Prove the following…
  30. cos^4 A + sin^4 A + 2 sin^2 A. cos^2 A = 1 Prove the following identities :…
  31. sin^4 A - cos^4 A = 2 sin^2 A - 1 = 1 - 2 cos^2 A = sin^2 A - cos^2 A Prove…
  32. cos^4 θ - sin^4 θ = cos^2 θ - sin^2 θ = 2 cos^2 θ - 1 Prove the following…
  33. 2 cos^2 θ - cos^4 θ + sin^4 θ = 1 Prove the following identities :…
  34. 1 - 2 cos^2 θ + cos^4 θ = sin^4 θ Prove the following identities :…
  35. 1 - 2 sin^2 θ + sin^4 θ = cos^4 θ Prove the following identities :…
  36. sec^2 θ + cosec^2 θ = sec^2 θ.cosec^2 θ Prove that the following identities :…
  37. cos^2theta /sintegrate heta +sintegrate heta = cosectheta Prove that the…
  38. cotθ + tan θ = cosec θ . sec θ Prove that the following identities :…
  39. 1-sintegrate heta /1+sintegrate heta = (1-sintegrate heta /costheta)^2 Prove…
  40. 1-costheta /1+costheta = (1-costheta /sintegrate heta)^2 Prove that the…
  41. 1-costheta /1+costheta = (1-costheta /sintegrate heta)^2 Prove that the…
  42. costheta /1+sintegrate heta = 1-sintegrate heta /costheta Prove that the…
  43. (sin^8 θ - cos^8 θ) = (sin^2 θ - cos^2 θ)(1 - 2sin^2 θ .cos^2 θ) Prove that the…
  44. 2(sin^6 θ - cos^6 θ) - 3(sin^4 θ + cos^4 θ) + (sin^2 θ + cos^2 θ) Prove that…
  45. cosa/1-tana + sina/1-cota = sina+cosa Prove the following identities…
  46. sintegrate heta /1+costheta + 1+costheta /sintegrate heta = 2/sintegrate heta…
  47. 1/1+sintegrate heta + 1/1-sintegrate heta = 2sec^2theta Prove the following…
  48. 1+sintegrate heta /costheta + costheta /1+sintegrate heta = 2sectheta Prove the…
  49. costheta /1-sintegrate heta + costheta /1+sintegrate heta = 2/costheta Prove…
  50. 1/1+costheta + 1/1-costheta = 2/sin^2theta Prove the following identities…
  51. 1/1-sintegrate heta - 1/1+sintegrate heta = 2tantheta /costheta Prove the…
  52. cot^2 θ - cos^2 θ = cot^2 θ . cos^2 θ Prove the following identities…
  53. tan^2 φ - sin^2 φ - tan^2 φ . sin^2 φ = 0 Prove the following identities…
  54. tan^2 φ + cot^2 φ + 2 = sec^2 ϕ. cosec^2 ϕ Prove the following identities…
  55. cosectheta +cottheta -1/cottheta -cosectheta +1 = 1+costheta /sintegrate heta…
  56. tantheta /1-cottheta + cottheta /1-tantheta = 1+tantheta +cottheta Prove the…
  57. 1-costheta /1+costheta = (cottheta -cosectheta)^2 Prove the following…
  58. root 1+costheta /1-costheta = 1+costheta /sintegrate heta Prove the following…
  59. root 1+costheta /1-costheta = sintegrate heta /1-costheta Prove the following…
  60. root 1-sintegrate heta /1+sintegrate heta = sectheta -tantheta Prove the…
  61. root 1-sintegrate heta /1+sintegrate heta = costheta /1+sintegrate heta Prove…
  62. root 1+sintegrate heta /1-sintegrate heta + root 1-sintegrate heta…
  63. If secθ + tanθ=m and sec θ - tanθ = n, then prove that root mn = 1…
  64. If cosθ + sinθ = 1, then prove that cosθ - sin θ = ± 1.
  65. If sinθ + sin^2 θ = 1, then prove that cos^2 θ +1 cos^4 θ = 1
  66. If tanθ + secθ = x, show that sinθ = x^2 - 1/x^2 + 1
  67. If sinθ + cosθ = p and secθ + cosecθ = q, then show q(p^2 -1) =2p…
  68. If x cosθ =a and y = a tanθ, then prove that x^2 -y^2 =a^2
  69. If x= r cos α sin β, y = r sin α sin β and z = r cos α then prove that x^2 +…
  70. If secθ - tanθ = x, then prove that (i) costheta = 2x/1+x^2 (ii) sintegrate…
  71. If a cos θ + b sinθ = c, then prove that a sinθ - b cos θ = ± root a^2 + b^2 -…
  72. If 1+sin^2 θ = 3 sinθ . cosθ, then prove that tan θ = 1 or 1/2.
  73. If a cos θ - b sinθ = x and a sinθ + b cosθ = y that a^2 + b^2 = x^2 + y^2 .…
  74. If x = a sec θ + b tan θ a and y = a tan θ + b sec θ, then prove that x^2 - y^2…
  75. If (a^2 - b^2) sin θ + 2ab cosθ = a^2 + b^2 , then prove that tantheta = a^2 -…

Exercise 4.1
Question 1.

From the given figure, find the value of the following:



(i) sin C

(ii) sin A

(iii) cos C

(iv) cos A

(v) tan C

(vi) tan A


Answer:

(i) Sin C


We know that,



So, here θ = C


Side opposite to ∠C = AB = 3


Hypotenuse = AC = 5


So,


(ii) Sin A


So, here θ = A


The side opposite to ∠A = BC = 4


Hypotenuse = AC = 5


So,


(iii) Cos C


We know that,



So, here θ = C


Side adjacent to ∠C = BC = 4


Hypotenuse = AC = 5


So,


(iv) Cos A


Here, θ = A


Side adjacent to ∠A = AB = 3


Hypotenuse = AC = 5


So,


(v) tan C


We know that,



So, here θ = C


Side opposite to ∠C = AB = 3


Side adjacent to ∠C = BC = 4


So,


(vi) tan A


here θ = A


Side opposite to ∠A = BC = 4


Side adjacent to ∠A = AB = 3


So,



Question 2.

From the given figure, find the value of :

(i) tan θ

(ii) cos θ



Answer:

(i) tan θ


We know that,



Side opposite to θ = AB = 4


Side adjacent to θ = BC = 3


So,


(ii) cos θ


We know that,



Side adjacent to θ = BC = 3


Hypotenuse = AC = 5


So,



Question 3.

From the given figure, find the value of

(i) sin θ

(ii) tan θ

(iii) tan A – cot C



Answer:

(i) sin θ


We know that,



Side opposite to θ = BC = ?


Hypotenuse = AC = 13


Firstly we have to find the value of BC.


So, we can find the value of BC with the help of Pythagoras theorem.


According to Pythagoras theorem,


(Hypotenuse)2 = (Base)2 + (Perpendicular)2


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (12)2 + (BC)2 = (13)2


⇒ 144 + (BC)2 = 169


⇒ (BC)2 = 169–144


⇒ (BC)2 = 25


⇒ BC =√25


⇒ BC =±5


But side BC can’t be negative. So, BC = 5


Now, BC = 5 and AC = 13


So,


(ii) tan θ


We know that,



Side opposite to θ = BC = 5


Side adjacent to θ = AB = 12


So,


(iii) tan A – cot C


We know that,



and



tan A


Here, θ = A


Side opposite to ∠A = BC = 5


Side adjacent to ∠A = AB = 12


So,


Cot C


Here, θ = C


Side adjacent to ∠C = BC = 5


Side opposite to ∠C = AB = 12


So,


So,



Question 4.

In ∆ABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine

a. sin A, cos A

b. sin C, cos C


Answer:


(i)


(a) sin A


We know that,



So, here θ = A


Side opposite to ∠A = BC = 7


Hypotenuse = AC = ?


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem.


According to Pythagoras theorem,


(Hypotenuse)2 = (Base)2 + (Perpendicular)2


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (24)2 + (7)2 = (AC)2


⇒ 576 + 49 = (AC)2


⇒ (AC)2 = 625


⇒ AC =√625


⇒ AC =±25


But side AC can’t be negative. So, AC = 25cm


Now, BC = 7 and AC = 25


So,


Cos A


We know that,



So, here θ = A


Side adjacent to ∠A = AB = 24


Hypotenuse = AC = 25


So,


(b) sin C


We know that,



So, here θ = C


The side opposite to ∠C = AB = 24


Hypotenuse = AC = 25


So,


Cos C


We know that,



So, here θ = C


Side adjacent to ∠C = BC = 7


Hypotenuse = AC = 25


So,



Question 5.

Consider ∆ACB, right angled at C, in which AB = 29 units, BC = 21 units and ∠ABC=θ. Determine the values of

a. cos2 θ+ sin2 θ

b. cos2 θ – sin2 θ


Answer:


(a) Cos2θ +sin2 θ


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem.


According to Pythagoras theorem,


(Hypotenuse)2 = (Base)2 + (Perpendicular)2


⇒ (AC)2 + (BC)2 = (AB)2


⇒ (AC)2 + (21)2 = (29)2


⇒ (AC)2 = (29)2 – (21)2


Using the identity a2 –b2 = (a+b) (a – b)


⇒ (AC)2 = (29–21)(29+21)


⇒ (AC)2 = (8)(50)


⇒ (AC)2 = 400


⇒ AC =√400


⇒ AC =±20


But side AC can’t be negative. So, AC = 20units


Now, we will find the sin θ and cos θ



In ∆ACB, Side opposite to angle θ = AC = 20


and Hypotenuse = AB = 29


So,


Now, We know that



In ∆ACB, Side adjacent to angle θ = BC = 21


and Hypotenuse = AB = 29


So,


So




=1


Cos2θ +sin2 θ = 1


(b) Cos2θ – sin2 θ


Putting values, we get






Question 6.

In ∆ABC, ∠A is a right angle, then find the values of sin B, cos C and tan B in each of the following :

a. AB = 12, AC = 5, BC = 13

b. AB = 20, AC = 21, BC = 29

c. BC = √2, AB = AC = 1


Answer:

Given that ∠A is a right angle.



(a) AB = 12, AC = 5, BC = 13


To Find : sin B, cos C and tan B


We know that,



Here, θ = B


Side opposite to angle B = AC = 5


Hypotenuse = BC =13


So,


Now, Cos C


We know that,



Here, θ = C


Side adjacent to angle C = AC = 5


Hypotenuse = BC =13


So,


Now, tan B


We know that,



Here, θ = B


The side opposite to angle B = AC = 5


The side adjacent to angle B = AB = 12


So,


(b) AB = 20, AC = 21, BC = 29


To Find: sin B, cos C and tan B


We know that,



Here, θ = B


The side opposite to angle B = AC =21


Hypotenuse = BC =29


So,


Now, Cos C


We know that,



Here, θ = C


Side adjacent to angle C = AC = 21


Hypotenuse = BC = 29


So,


Now, tan B


We know that,



Here, θ = B


The side opposite to angle B = AC = 21


The side adjacent to angle B = AB = 20


So,


(c) BC =√2, AB = AC = 1


To Find: sin B, cos C and tan B


We know that,



Here, θ = B


The side opposite to angle B = AC =1


Hypotenuse = BC =√2


So


Now, Cos C


We know that,



Here, θ = C


Side adjacent to angle C = AC = 1


Hypotenuse = BC = √2


So,


Now, tan B


We know that,



Here, θ = B


The side opposite to angle B = AC = 1


The side adjacent to angle B = AB = 1


So,



Question 7.

Find the value of the following : (a) sin θ (b) cos θ (c) tan θ from the figures given below :



Answer:

Firstly, we give the name to the midpoint of BC i.e. M


BC = BM + MC = 2BM or 2MC


⇒ BM = 5 and MC = 5


Now, we have to find the value of AM, and we can find out with the help of Pythagoras theorem.


So, In ∆AMB


⇒ (AM)2 + (BM)2 = (AB)2


⇒ (AM)2 + (5)2 = (13)2


⇒ (AM)2 = (13)2 – (5)2


Using the identity a2 –b2 = (a+b) (a – b)


⇒ (AM)2 = (13–5)(13+5)


⇒ (AM)2 = (8)(18)


⇒ (AM)2 = 144


⇒ AM =√144


⇒ AM =±12


But side AM can’t be negative. So, AM = 12


a. sin θ



We know that,



In ∆AMB


Side opposite to θ = AM = 12


Hypotenuse = AB=13


So,


So,


b. cos θ


We know that,


In ∆AMB


The side adjacent to θ = BM = 5


Hypotenuse = AB = 13


So,


So,


c. tan θ



We know that,




In ∆AMB


Side opposite to θ = AM = 12


The side adjacent to θ = BM = 5


So,


So,



Question 8.

Find the value of the following : (a) sin θ (b) cos θ (c) tan θ from the figures given below :



Answer:

Firstly, we have to find the value of XM and we can find out with the help of Pythagoras theorem


So, In ∆XMZ


⇒ (XM)2 + (MZ)2 = (XZ)2


⇒ (XM)2 + (16)2 = (20)2


⇒ (XM)2 = (20)2 – (16)2


Using the identity a2 –b2 = (a+b) (a – b)


⇒ (XM)2 = (20–16)(20+16)


⇒ (XM)2 = (4)(36)


⇒ (XM)2 = 144


⇒ XM =√144


⇒ XM =±12


But side XM can’t be negative. So, XM = 12


Now, In ∆XMY we have the value of XM and MY but we don’t have the value of XY.


So, again we apply the Pythagoras theorem in ∆XMY


⇒ (XM)2 + (MY)2 = (XY)2


⇒ (12)2 + (5)2 = (XY)2


⇒ 144 + 25 = (XY)2


⇒ (XY)2 = 169


⇒ XY =√169


⇒ XY =±13


But side XY can’t be negative. So, XY = 13


a. sin θ


We know that,



In ∆XMY


Side opposite to θ = MY = 5


Hypotenuse = XY = 13


So,


b. cos θ


We know that,




In ∆XMY


Side adjacent to θ = XM = 12


Hypotenuse = XY = 13


So


c. tan θ


We know that,




In ∆XMY


The side opposite to θ = MY = 5


Side adjacent to θ = XM = 12


So,



Question 9.

In ∆PQR, ∠Q is a right angle PQ = 3, QR = 4. If ∠P=α and ∠R=β, then find the values of

(i) sin α (ii) cos α

(iii) tan α (iv) sin β

(v) cos β (vi) tan β


Answer:


Given : PQ = 3, QR = 4


⇒ (PQ)2 + (QR)2 = (PR)2


⇒ (3)2 + (4)2 = (PR)2


⇒ 9 + 16 = (PR)2


⇒ (PR)2 = 25


⇒ PR =√25


⇒ PR =±5


But side PR can’t be negative. So, PR = 5


(i) sin α


We know that,



Here, θ = α


The side opposite to angle α = QR =4


Hypotenuse = PR =5


So,


(ii) cos α


We know that,



Here, θ = α


The side adjacent to angle α = PQ =3


Hypotenuse = PR =5


So,


(iii) tan α


We know that,



Here, θ = α


Side opposite to angle α = QR =4


Side adjacent to angle α = PQ =3


So,


(iv) sin β


We know that,



Here, θ = β


The side opposite to angle β = PQ =3


Hypotenuse = PR =5


So,


(v) cos β


We know that,



Here, θ = β


Side adjacent to angle β = QR =4


Hypotenuse = PR =5


So,


(vi) tan β


We know that,



Here, θ = β


Side opposite to angle β = PQ =3


Side adjacent to angle β = QR =4


So,



Question 10.

If then find the values of cos θ and tan θ.


Answer:

Given:



We know that,



Or



Let,


Perpendicular =AB =4k


and Hypotenuse =AC =5k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


In right angled ∆ ABC, we have


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (4k)2 + (BC)2 = (5k)2


⇒ 16k2 + (BC)2 = 25k2


⇒ (BC)2 = 25 k2 –16 k2


⇒ (BC)2 = 9 k2


⇒ BC =√9 k2


⇒ BC =±3k


But side BC can’t be negative. So, BC = 3k


Now, we have to find the value of cos θ and tan θ


We know that,



The side adjacent to angle θ or base = BC =3k


Hypotenuse = AC =5k


So,


Now,


We know that,


Perpendicular = AB =4k


Base = BC =3k


So,



Question 11.

If calculate cos A and tan A.


Answer:

Given: Sin A


We know that,



Or



Let,


Side opposite to angle θ = BC =3k


and Hypotenuse = AC =4k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (AB)2 + (3k)2 = (4k)2


⇒ (AB)2 + 9k2 = 16k2


⇒ (AB)2 = 16 k2 – 9 k2


⇒ (AB)2 = 7 k2


⇒ AB =k√7


So, AB = k√7


Now, we have to find the value of cos A and tan A


We know that,



Here, θ = A


The side adjacent to angle A = AB =k√7


Hypotenuse = AC =4k


So,


Now,


We know that,




The side opposite to angle A = BC =3k


The side adjacent to angle A = AB =k√7


So,



Question 12.

If then find the values cos θ and tan θ.


Answer:

Given:


We know that,



Or



Let,


Perpendicular =AB =3k


and Hypotenuse =AC =5k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (3k)2 + (BC)2 = (5k)2


⇒ 9k2 + (BC)2 = 25k2


⇒ (BC)2 = 25 k2 – 9 k2


⇒ (BC)2 = 16 k2


⇒ BC =√16 k2


⇒ BC =±4k


But side BC can’t be negative. So, BC = 4k


Now, we have to find the value of cos θ and tan θ


We know that,



The side adjacent to angle θ = BC =4k


Hypotenuse = AC =5k


So,


Now, tan θ


We know that,


Perpendicular = AB =3k


Base = BC =4k


So,



Question 13.

If then find the value of tan θ.


Answer:


We know that,



Or



Let,


Base =BC = 4k


Hypotenuse =AC = 5k


Where, k ia any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (AB)2 + (4k)2 = (5k)2


⇒ (AB)2 + 16k2 = 25k2


⇒ (AB)2 = 25 k2 –16 k2


⇒ (AB)2 = 9 k2


⇒ AB =√9 k2


⇒ AB =±3k


But side AB can’t be negative. So, AB = 3k


Now, we have to find tan θ


We know that,



Side opposite to angle θ = BC =4k


Side adjacent to angle θ = AB =3k


So



Question 14.

If then find the values of cos θ and sin θ.


Answer:


We know that,



Or



Let,


The side opposite to angle θ =AB = 3k


The side adjacent to angle θ =BC = 4k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (3k)2 + (4k)2 = (AC)2


⇒ (AC)2 = 9 k2+16 k2


⇒ (AC)2 = 25 k2


⇒ AC =√25 k2


⇒ AC =±5k


But side AC can’t be negative. So, AC = 5k


Now, we will find the sin θ and cos θ



Side opposite to angle θ = AB = 3k


and Hypotenuse = AC = 5k


So,


Now, We know that



Side adjacent to angle θ = BC = 4k


and Hypotenuse = AC = 5k


So,



Question 15.

If tan A= 4/3. Find the other trigonometric ratios of the angle A.


Answer:


We know that,



Or


Here, θ = A



Let,


The side opposite to angle A =BC = 4k


The side adjacent to angle A =AB = 3k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (3k)2 + (4k)2 = (AC)2


⇒ (AC)2 = 9 k2 +16 k2


⇒ (AC)2 = 25 k2


⇒ AC =√25 k2


⇒ AC =±5k


But side AC can’t be negative. So, AC = 5k


Now, we will find the sin A and cos A



Side opposite to angle A = BC = 4k


and Hypotenuse = AC = 5k


So,


Now, We know that



Side adjacent to angle A = AB = 3k


and Hypotenuse = AC = 5k


So,


Now, we find other trigonometric ratios












Question 16.

If cot , then find the value of sin θ.


Answer:


We know that,



Or



Let,


Side adjacent to angle θ =AB = 12k


The side opposite to angle θ =BC = 5k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (12k)2 + (5k)2 = (AC)2


⇒ (AC)2 = 144 k2 +25 k2


⇒ (AC)2 = 169 k2


⇒ AC =√169 k2


⇒ AC =±13k


But side AC can’t be negative. So, AC = 13k


Now, we will find the sin θ



Side opposite to angle θ = BC = 5k


and Hypotenuse = AC = 13k


So,



Question 17.

If tan , then find the value of cos θ.


Answer:


We know that,



Or



Let,


The side opposite to angle θ =BC = 5k


The side adjacent to angle θ =AB = 12k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (12k)2 + (5k)2 = (AC)2


⇒ (AC)2 = 144 k2 +25 k2


⇒ (AC)2 = 169 k2


⇒ AC =√169 k2


⇒ AC =±13k


But side AC can’t be negative. So, AC = 13k


Now, We know that



Side adjacent to angle θ = AB = 12k


and Hypotenuse = AC = 13k


So,



Question 18.

If sin , then find the value of cos θ and tan θ.


Answer:

Given: Sin θ



We know that,



Or



Let,


Side opposite to angle θ = 12k


and Hypotenuse = 13k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (12k)2 + (BCk)2 = (13)2


⇒ 144 k2 + (BC)2 = 169 k2


⇒ (BC)2 = 169 k2 –144 k2


⇒ (BC)2 = 25 k2


⇒ BC =√25 k2


⇒ BC =±5k


But side BC can’t be negative. So, BC = 5k


Now, we have to find the value of cos θ and tan θ


We know that,



Side adjacent to angle θ = BC =5k


Hypotenuse = AC =13k


So,


Now, tan θ


We know that,




side opposite to angle θ = AB =12k


Side adjacent to angle θ = BC =5k


So,



Question 19.

If tan θ =0.75, then find the value of sin θ.


Answer:


We know that,



Or


Given: tan θ =0.75




Let,


The side opposite to angle θ =BC = 3k


The side adjacent to angle θ =AB = 4k


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (4k)2 + (3k)2 = (AC)2


⇒ (AC)2 = 16 k2 +9 k2


⇒ (AC)2 = 25 k2


⇒ AC =√25 k2


⇒ AC =±5k


But side AC can’t be negative. So, AC = 5k


Now, we will find the sin θ



Side opposite to angle θ = BC = 3k


and Hypotenuse = AC = 5k


So,



Question 20.

If tan B= √3, then find the values of sin B and cos B.


Answer:


We know that,



Or


Given: tan B = √3




Let,


Side opposite to angle B =AC = √3k


The side adjacent to angle B =AB = 1k


where k is any positive integer


Firstly we have to find the value of BC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (AC)2 = (BC)2


⇒ (1k)2 + (√3k)2 = (BC)2


⇒ (BC)2 = 1 k2 +3 k2


⇒ (BC)2 = 4 k2


⇒ BC =√2 k2


⇒ BC =±2k


But side BC can’t be negative. So, BC = 2k


Now, we will find the sin B and cos B



Side opposite to angle B = AC = k√3


and Hypotenuse = BC = 2k


So,


Now, we know that,



The side adjacent to angle B = AB =1k


Hypotenuse = BC =2k


So,



Question 21.

If , then find the values of cos θ and sin θ.


Answer:


We know that,



Or


Here,


So, Side opposite to angle θ =AC = m


The side adjacent to angle θ =AB = n


Firstly we have to find the value of BC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (AC)2 = (BC)2


⇒ (n)2 + (m)2 = (BC)2


⇒ (BC)2 = m2 + n2


⇒ BC =√ m2 + n2


So, BC =√(m2 + n2)


Now, we will find the sin B and cos B



Side opposite to angle θ = AC = m


and Hypotenuse = BC =√(m2 + n2)


So,


Now, we know that,



Side adjacent to angle θ = AB =n


Hypotenuse = BC =√(m2 + n2)


So,



Question 22.

If sin θ = √3 cos θ, then find the values of cos θ and sin θ.


Answer:

Given : sin θ =√3cos θ


⇒ tan θ =√3



We know that,



Or


and tan θ = √3




Let,


The side opposite to angle θ =AC = k√3


The side adjacent to angle θ =AB = 1k


where k is any positive integer


Firstly we have to find the value of BC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (AC)2 = (BC)2


⇒ (1k)2 + (k√3)2 = (BC)2


⇒ (BC)2 = 1 k2 +3 k2


⇒ (BC)2 = 4 k2


⇒ BC =√2 k2


⇒ BC =±2k


But side BC can’t be negative. So, BC = 2k


Now, we will find the sin θ and cos θ



Side opposite to angle θ = AC = k√3


and Hypotenuse = BC = 2k


So,


Now, we know that,



The side adjacent to angle θ = AB =1k


Hypotenuse = BC =2k


So,



Question 23.

If , then find the values of cos θ and sin θ.


Answer:


We know that,



Or



Let,


Side adjacent to angle θ =AB = 21k


The side opposite to angle θ =BC = 20k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (21k)2 + (20k)2 = (AC)2


⇒ (AC)2 = 441 k2 +400 k2


⇒ (AC)2 = 841 k2


⇒ AC =√841 k2


⇒ AC =±29k


But side AC can’t be negative. So, AC = 29k


Now, we will find the sin θ



Side opposite to angle θ = BC = 20k


and Hypotenuse = AC = 29k


So,


Now, we know that,



Side adjacent to angle θ = AB =21k


Hypotenuse = AC =29k


So,



Question 24.

If 15 cot A=18, find sin A and sec A.


Answer:

Given: 15 cot A = 8



And we know that,



Or



Let,


Side adjacent to angle A =AB = 8k


The side opposite to angle A =BC = 15k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (8k)2 + (15k)2 = (AC)2


⇒ (AC)2 = 64 k2 +225 k2


⇒ (AC)2 = 289 k2


⇒ AC =√289 k2


⇒ AC =±17k


But side AC can’t be negative. So, AC = 17k


Now, we will find the sin θ



Side opposite to angle θ = BC = 15k


and Hypotenuse = AC = 17k


So,


Now, we know that,



The side adjacent to angle θ = AB =8


Hypotenuse = AC =17


So,






Question 25.

If sin θ = cos θ and 0° < θ <90°, then find the values of sin θ and cos θ.


Answer:

Given: sinθ = cosθ


⇒ tan θ = 1




Let,


Side opposite to angle θ = AB =1k


The side adjacent to angle θ = BC =1k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (1k)2 + (1k)2 = (AC)2


⇒ (AC)2 = 1k2 +1k2


⇒ (AC)2 = 2k2


⇒ AC =√2k2


⇒ AC =k√2


So, AC = k√2


Now, we will find the sin θ



Side opposite to angle θ = AB= 1k


and Hypotenuse = AC = k√2


So,


Now, we know that,



The side adjacent to angle θ = BC =1k


Hypotenuse = AC =k√2


So,



Question 26.

If , then find the values of cos θ and .


Answer:



We know that,



Or,



Let,


Side opposite to angle θ = AB = x2 – y2


and Hypotenuse = AC = x2 + y2


In right angled ∆ABC, we have


(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]


⇒ (x2 – y2 )2 + (BC)2 = (x2 + y2 )2


⇒ (BC)2 = (x2 + y2 )2 – (x2 – y2 )2


Using the identity, a2 – b2 = (a+b)(a – b)


⇒ (BC)2 = [(x2 + y2 + x2 – y2 )][ x2 + y2 –( x2 – y2)]


⇒ (BC)2 = (2x2)(2y2)


⇒ (BC)2 = (4x2y2)


⇒ BC =√4x2y2


⇒ BC = ±2xy


⇒ BC = 2xy [taking positive square root since, side cannot be negative]



and


So,



Question 27.

If, then find the values of sin θ and cos θ.


Answer:

Given:


We know that,



Let,


AB = √(m2 – n2) and BC = n


In right angled ∆ABC, we have


(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]


⇒ (√(m2 – n2))2 + (n)2 = (AC )2


⇒ m2 – n2 + n2 = (AC )2


⇒ (AC)2 = (m2)


⇒ AC =√ m2


⇒ AC = ±m


⇒ AC = m [taking positive square root since, side cannot be negative]


Now, we have to find the value of cos θ and sin θ


We, know that




and





Question 28.

If sec θ = 2, then find the values of other t–ratios of angle θ.


Answer:

Given: sec θ = 2



We know that,




Let,


BC = 1k and AC = 2k


where, k is any positive integer.


In right angled ∆ABC, we have


(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]


⇒ (AB)2 + (1k)2 = (2k )2


⇒ (AB)2 + k2 = 4k2


⇒ (AB)2 = 4k2 – k2


⇒ (AB)2 = 3k2


⇒ AB = k√3


Now, we have to find the value of other trigonometric ratios.


We, know that











Question 29.

Given calculate all other trigonometric ratios.


Answer:


Given:


We know that,




Let,


BC = 12k and AC = 13k


where, k is any positive integer.


In right angled ∆ABC, we have


(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]


⇒ (AB)2 + (12k)2 = (13k )2


⇒ (AB)2 + 144k2 = 169k2


⇒ (AB)2 = 169k2 – 144k2


⇒ (AB)2 = 25k2


⇒ AB = √25k2


⇒ AB =±5k [taking positive square root since, side cannot be negative]


Now, we have to find the value of other trigonometric ratios.


We, know that











Question 30.

If , then find the values of other t–ratios of angle θ.


Answer:

Given: cosec θ = √10


We know that,




Let,


AB = 1k and AC = k√10


where, k is any positive integer.


In right angled ∆ABC, we have


(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]


⇒ (1k )2+ (BC)2 = (k√10)2


⇒ (BC)2 = 10k2 – k2


⇒ (BC)2 = 9k2


⇒ BC = √9k2


⇒ BC =±3k [taking positive square root since, side cannot be negative]


Now, we have to find the value of other trigonometric ratios.


We, know that











Question 31.

If then find the values of sin A + cos A.


Answer:


We know that,



Or


Given:




Let,


Side opposite to angle A =BC = k√3


Side adjacent to angle A =AB = 2k


where, k is any positive integer


Firstly we have to find the value of BC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (2k)2 + (√3k)2 = (AC)2


⇒ (AC)2 = 4 k2 +3 k2


⇒ (AC)2 = 7 k2


⇒ AC =√7 k2


⇒ AC =k√7


So, AC = k√7


Now, we will find the sin A and cos A



Side opposite to angle A = BC = k√3


and Hypotenuse = AC = k√7


So,


Now, we know that,



Side adjacent to angle A = AB =2k


Hypotenuse = AC = k√7


So,


Now, we have to find sin A +cos A


Putting values of sin A and cos A, we get




Question 32.

If find the value of cos θ – sin θ.


Answer:

Given: sin θ =√3cos θ


⇒ tan θ = √3



We know that,



Or


Given: tan θ = √3




Let,


Side opposite to angle θ =AC = √3k


Side adjacent to angle θ =AB = 1k


where k is any positive integer


Firstly we have to find the value of BC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (AC)2 = (BC)2


⇒ (1k)2 + (√3k)2 = (BC)2


⇒ (BC)2 = 1 k2 +3 k2


⇒ (BC)2 = 4 k2


⇒ BC =√2 k2


⇒ BC =±2k


But side BC can’t be negative. So, BC = 2k


Now, we will find the sin B and cos B



Side opposite to angle θ = AC = k√3


and Hypotenuse = BC = 2k


So,


Now, we know that,



The side adjacent to angle θ = AB =1k


Hypotenuse = BC =2k


So,


Now, we have to find the value of cos θ – sin θ


Putting the values of sin θ and cos θ, we get




Question 33.

If , find the value of 1+ cos2 θ.


Answer:


We know that,



Or



Let,


Side opposite to angle θ =AB = 8k


Side adjacent to angle θ =BC = 15k


where, k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (8k)2 + (15k)2 = (AC)2


⇒ (AC)2 = 64k2+225k2


⇒ (AC)2 = 289 k2


⇒ AC =√289 k2


⇒ AC =±17k


But side AC can’t be negative. So, AC = 17k


Now, we will find the cos θ


We know that



Side adjacent to angle θ = BC = 15k


and Hypotenuse = AC = 17k


So,


Now, we have to find the value of 1+ cos2 θ


Putting the value of cos θ, we get







Question 34.

If , evaluate

(i)

(ii)


Answer:


Given:


We know that,



Or



Let,


Side adjacent to angle θ =AB = 7k


Side opposite to angle θ =BC = 8k


where, k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (7k)2 + (8k)2 = (AC)2


⇒ (AC)2 = 49 k2 +69 k2


⇒ (AC)2 = 113 k2


⇒ AC =√113 k2


⇒ AC =k√113




(i)


We know that,


(a+b)(a – b) = (a2 – b2)


So, using this identity, we get








(ii) cot2 θ


Given





Question 35.

If 3 cot A = 4, check whether =cos2A–sin2 A or not.


Answer:

Given: 3cot A = 4



We know that,



Or



Let,


Side adjacent to angle A =AB = 4k


The side opposite to angle A =BC = 3k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (4k)2 + (3k)2 = (AC)2


⇒ (AC)2 = 16 k2 + 9 k2


⇒ (AC)2 = 25 k2


⇒ AC =√25k2


⇒ AC = ±5k [taking positive square root since, side cannot be negative]




and


Now,




…(i)


And RHS = cos2 A – sin2 A



=


…(ii)


From Eqs. (i) and (ii) LHS =RHS


Hence Proved



Question 36.

In a right triangle ABC, right angled at B, if tan A = 1, then verify that 2 sin A cos A = 1.


Answer:

tan A = 1


As we know



Now construct a right angle triangle right angled at B such that


∠ BAC = θ


Hence perpendicular = BC = 1 and base = AB = 1



By Pythagoras theorem,


AC2 = AB2 + BC2


⇒ AC2 = (1)2 + (1)2


⇒ AC2 = 2


⇒ AC =


As,




Hence,


2 sin A cos A=


⇒ 2 sin A cos A=


⇒ 2 sin A cos A=1


= R.H.S


Hence proved.



Question 37.

If 4sin2 θ =3 and 0o < θ <90o, find the value of 1 + cos θ.


Answer:

4sin2 θ =3



But it is given 0o< θ <90o


So,



Let, P =k√3 and H =2k


In right angled ∆ABC, we have


B2 + P2 = H2


⇒ B2 + (k√3)2 = (2k)2


⇒ B2 + 3k2 = 4k2


⇒ B2 = 4k2 – 3k2


⇒ B2 = k2


⇒ B = ±k


⇒ B = k [taking positive square root since, side cannot be negative]



So,



Question 38.

If find the value of .


Answer:

Given:

Now,









Question 39.

If 13 cos θ = 5, .


Answer:

Given: 13 cosθ = 5



We know that,




Let AB =5k and BC = 13k


In right angled ∆ABC, we have


B2 + P2 = H2


⇒ (5k)2 + P2 = (13k)2


⇒ P2 + 25k2 = 169k2


⇒ P2 = 169k2 – 25k2


⇒ P2 = 144k2


⇒ P =√144k2


⇒ P = ±12k


⇒ P = 12k [taking positive square root since, side cannot be negative]



Now,





Question 40.

If , show that =3.


Answer:

Given:



We know that,




Let,


BC = 5k and AC = 13k


where, k is any positive integer.


In right angled ∆ABC, we have


(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]


⇒ (AB)2 + (5k)2 = (13k )2


⇒ (AB)2 + 25k2 = 169k2


⇒ (AB)2 = 169k2 – 25k2


⇒ (AB)2 = 144k2


⇒ AB = √144k2


⇒ AB =±12k [taking positive square root since, side cannot be negative]


Now, we have to find the value of other trigonometric ratios.


We, know that






Now, LHS =





=3 =RHS


Hence Proved



Question 41.

If 2 tan θ = 1, find the value of .


Answer:

Given: 2 tan θ = 1



We know that,



Or



Let,


Side opposite to angle θ =AB = 1k


Side adjacent to angle θ =BC = 2k


where, k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (k)2 + (2k)2 = (AC)2


⇒ (AC)2 = k2+4k2


⇒ (AC)2 = 5k2


⇒ AC =√5k2


⇒ AC =±k√5


But side AC can’t be negative. So, AC = k√5


Now, we will find the sin θ and cos θ


We know that



Side adjacent to angle θ = BC = 2k


and Hypotenuse = AC = k√5


So,


And


Side adjacent to angle θ =AB = 1k


And Hypotenuse =AC = k√5


So,


Now,






Question 42.

If 5 tan α = 4, show that .


Answer:

Given: 5 tan = 4

⇒ tan α



We know that,



Or



Let,


The side opposite to angle α =AB = 4k


The side adjacent to angle α =BC = 5k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (4k)2 + (5k)2 = (AC)2


⇒ (AC)2 = 16k2+25k2


⇒ (AC)2 = 41k2


⇒ AC =√41k2


⇒ AC =±k√41


But side AC can’t be negative. So, AC = k√41


Now, we will find the sin α and cos α


We know that



Side adjacent to angle α = BC = 5k


and Hypotenuse = AC = k√41


So,


And


Side adjacent to angle α =AB = 4k


And Hypotenuse =AC = k√5


So,


Now, LHS





= RHS


Hence Proved



Question 43.

If prove that .


Answer:


We know that,



Or



Let,


Side adjacent to angle θ =AB = 3k


The side opposite to angle θ =BC = 4k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (3k)2 + (4k)2 = (AC)2


⇒ (AC)2 = 9k2 +16k2


⇒ (AC)2 = 25k2


⇒ AC =√25k2


⇒ AC =±5k


But side AC can’t be negative. So, AC = 5k


Now, we will find the sin θ



Side opposite to angle θ = BC = 4k


and Hypotenuse = AC = 5k


So,


Now, we know that,



The side adjacent to angle θ = AB =3k


Hypotenuse = AC =5k


So,



And



Now, LHS





= RHS


Hence Proved



Question 44.

If verify that: .


Answer:


We know that,



Or



Let,


Side adjacent to angle θ =AB = 1k


Side opposite to angle θ =AC = k√3


where, k is any positive integer


Firstly we have to find the value of BC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (AC)2 = (BC)2


⇒ (1k)2 + (√3k)2 = (BC)2


⇒ (BC)2 = 1 k2 +3 k2


⇒ (BC)2 = 4 k2


⇒ BC =√2 k2


⇒ BC =±2k


But side BC can’t be negative. So, BC = 2k


Now, we will find the sin θ and cos θ



Side opposite to angle θ = AC = k√3


and Hypotenuse = BC = 2k


So


Now, we know that,



Side adjacent to angle θ = AB =1k


Hypotenuse = BC =2k


So,


Now, LHS





= RHS


Hence Proved



Question 45.

If find the value of x sin θ + y cos θ.


Answer:


We know that,



Or



Let,


Side opposite to angle θ =AB = x


Side adjacent to angle θ =BC = y


where, k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (x)2 + (y)2 = (AC)2


⇒ (AC)2 = x2+y2


⇒ AC =√( x2+y2)


Now, we will find the sin θ and cos θ


We know that



Side adjacent to angle θ = BC = y


and Hypotenuse = AC = √( x2+y2)


So,


And


Side adjacent to angle θ =AB = x


And Hypotenuse =AC = √( x2+y2)


So,


Now, x sin θ +y cos θ




= √( x2+y2)



Question 46.

If , find the value of tan2θ + sinθ cosθ + cotθ.


Answer:


Given: Sin θ


We know that,



Or



Let,


Perpendicular =AB =3k


and Hypotenuse =AC =5k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


In right angled ∆ ABC, we have


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (3k)2 + (BC)2 = (5k)2


⇒ 9k2 + (BC)2 = 25k2


⇒ (BC)2 = 25 k2 –9k2


⇒ (BC)2 = 16k2


⇒ BC =√16k2


⇒ BC =±4k


But side BC can’t be negative. So, BC = 4k


Now, we have to find the value of cos θ and tan θ


We know that,



The side adjacent to angle θ or base = BC =4k


Hypotenuse = AC =5k


So,


Now,


We know that,




Perpendicular = AB =3k


Base = BC =4k


So,



Now, tan2 θ + sin θ cos θ + cot θ







Question 47.

If 4cot θ = 3, show that .


Answer:

Given: cot θ


We know that,



Or



Let,


Side adjacent to angle θ =AB = 3k


The side opposite to angle θ =BC = 4k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (3k)2 + (4k)2 = (AC)2


⇒ (AC)2 = 9k2 +16k2


⇒ (AC)2 = 25k2


⇒ AC =√25k2


⇒ AC =±5k


But side AC can’t be negative. So, AC = 5k


Now, we will find the sin θ



Side opposite to angle θ = BC = 4k


and Hypotenuse = AC = 5k


So,


Now, we know that,



Side adjacent to angle θ = AB =3k


Hypotenuse = AC =5k


So,


Now, LHS




= 7 = RHS


Hence Proved



Question 48.

If , prove that


Answer:

Given: Sin θ


We know that,



Or



Let,


Perpendicular =AB =m


and Hypotenuse =AC =√(m2 + n2)


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


In right angled ∆ ABC, we have


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (m)2 + (BC)2 = (√(m2 + n2))2


⇒ m2 + (BC)2 = m2 + n2


⇒ (BC)2 = m2 + n2 – m2


⇒ (BC)2 = n2


⇒ BC =√n2


⇒ BC =±n


But side BC can’t be negative. So, BC = n


Now, we have to find the value of cos θ and tan θ


We know that,



Side adjacent to angle θ or base = BC =n


Hypotenuse = AC =√(m2 + n2)


So,


Now, LHS = m sin θ +n cosθ




=√(m2 + n2) = RHS


Hence Proved



Question 49.

If show that


Answer:


We know that,



Or



Let,


Base =BC = 12k


Hypotenuse =AC = 13k


Where, k ia any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (AB)2 + (12k)2 = (13k)2


⇒ (AB)2 + 144k2 = 169k2


⇒ (AB)2 = 169 k2 –144 k2


⇒ (AB)2 = 25 k2


⇒ AB =√25 k2


⇒ AB =±5k


But side AB can’t be negative. So, AB = 5k


Now, we have to find sin α and tan α


We know that,



Side opposite to angle α = AB =5k


And Hypotenuse = AC =13k


So,


We know that,



Side opposite to angle α = AB =5k


Side adjacent to angle α = BC =12k


So,


Now, LHS = sin α (1 – tan α)




= RHS


Hence Proved



Question 50.

If , prove that q sin θ = p.


Answer:

Given : q cos θ = √(q2 – p2)



We know that,



Or



Let,


Base =BC = √(q2 – p2)


Hypotenuse =AC = q


Where, k ia any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (AB)2 + (√(q2 – p2))2 = (q)2


⇒ (AB)2 + (q2 – p2) = q2


⇒ (AB)2 = q2 – q2 + p2)


⇒ (AB)2 = p2


⇒ AB =√p2


⇒ AB =±p


But side AB can’t be negative. So, AB = p


Now, we have to find sin θ


We know that,



The side opposite to angle θ = AB =p


And Hypotenuse = AC =q


So,


Now, LHS = q sin θ



= q = RHS


Hence Proved



Question 51.

If , show that :


Answer:

Given: Sin θ


We know that,



Or



Let,


Perpendicular =AB =3k


and Hypotenuse =AC =5k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


In right angled ∆ ABC, we have


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (3k)2 + (BC)2 = (5k)2


⇒ 9k2 + (BC)2 = 25k2


⇒ (BC)2 = 25 k2 –9k2


⇒ (BC)2 = 16k2


⇒ BC =√16k2


⇒ BC =±4k


But side BC can’t be negative. So, BC = 4k


Now, we have to find the value of cos θ and tan θ


We know that,



The side adjacent to angle θ or base = BC =4k


Hypotenuse = AC =5k


So,


Now,


We know that,




Perpendicular = AB =3k


Base = BC =4k


So,



Now, LHS






= RHS


Hence Proved



Question 52.

Find the value of

cos A sin B + sin A. cos B, if sin A= 4/5 and cos B = 12/13.


Answer:


Given:


To find: cos A sin B + sin A cos B


As, we have the value of sin A and cos B but we don’t have the value of cos A and sin B


So, First we find the value of cos A and sin B



We know that,



Or



Let,


Side opposite to angle A = 4k


and Hypotenuse = 5k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (P)2 + (B)2 = (H)2


⇒ (4k)2 + (B)2 = (5)2


⇒ 16 k2 + (B)2 = 25 k2


⇒ (B)2 = 25 k2 –16 k2


⇒ (B)2 = 9 k2


⇒ B =√9 k2


⇒ B =±3k [taking positive square root since, side cannot be negative]


So, Base = 3k


Now, we have to find the value of cos A


We know that,



Side adjacent to angle A =3k


Hypotenuse =5k


So,


Now, we have to find the sin B



We know that,




Let,


Side adjacent to angle B =12k


Hypotenuse =13k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (B)2 + (P)2 = (H)2


⇒ (12k)2 + (P)2 = (13)2


⇒ 144 k2 + (P)2 = 169 k2


⇒ (P)2 = 169 k2 –144 k2


⇒ (P)2 = 25 k2


⇒ P =√25 k2


⇒ P =±5k [taking positive square root since, side cannot be negative]


So, Perpendicular = 5k


Now, we have to find the value of sin B


We know that,




Now, cos A sin B + sin A cos B


Putting the values of sin A, sin B cos A and Cos B, we get






Question 53.

Find the value of

sin A. cos B – cos A. sin B, if tan A= √3 and sin B = 1/2.


Answer:


Given: tan A =√3 and


We know that,



Or



Let,


Side opposite to angle θ = 1k


and Hypotenuse = 2k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (AC)2 + (BC)2 = (AB)2


⇒ (1k)2 + (BC)2 = (2k)2


⇒ k2 + (BC)2 = 4k2


⇒ (BC)2 = 4k2 –k2


⇒ (BC)2 = 3 k2


⇒ BC =√3k2


⇒ BC =k√3


So, BC = k√3


Now, we have to find the value of cos B


We know that,



The side adjacent to angle B = BC =k√3


Hypotenuse = AB =2k


So,


We know that,



Or


Given: tan A = √3




Let,


The side opposite to angle A =BC = √3k


The side adjacent to angle A =AB = 1k


where k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (1k)2 + (√3k)2 = (AC)2


⇒ (AC)2 = 1 k2 +3 k2


⇒ (AC)2 = 4 k2


⇒ AC =√2 k2


⇒ AC =±2k


But side AC can’t be negative. So, AC = 2k


Now, we will find the sin A and cos A



Side opposite to angle A = BC = k√3


and Hypotenuse = AC = 2k


So,


Now, we know that,



The side adjacent to angle A = AB =1k


Hypotenuse = AC =2k


So,


Now, sin A. cos B – cos A. sin B


Putting the values of sin A, sin B cos A and Cos B, we get







Question 54.

Find the value of

sin A. cos B + cos A. sin B. if and tan B = √3.


Answer:

Given:





Let,


Side opposite to angle A =BC = 1k


Side adjacent to angle A =AB = k√3


where, k is any positive integer


Firstly we have to find the value of BC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (√3k)2 + (1k)2 = (AC)2


⇒ (AC)2 = 1 k2 +3 k2


⇒ (AC)2 = 4 k2


⇒ AC =√2 k2


⇒ AC =±2k


But side AC can’t be negative. So, AC = 2k


Now, we will find the sin A and cos A



Side opposite to angle A = BC = k


and Hypotenuse = AC = 2k


So,


Now, we know that,



Side adjacent to angle A = AB =k√3


Hypotenuse = AC =2k


So,


Now,



Given: tan B = √3




Let,


Side opposite to angle B =AC = √3k


Side adjacent to angle B =AB = 1k


where, k is any positive integer


Firstly we have to find the value of BC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (AC)2 = (BC)2


⇒ (1k)2 + (√3k)2 = (BC)2


⇒ (BC)2 = 1 k2 +3 k2


⇒ (BC)2 = 4 k2


⇒ BC =√2 k2


⇒ BC =±2k


But side BC can’t be negative. So, BC = 2k


Now, we will find the sin B and cos B



Side opposite to angle B = AC = k√3


and Hypotenuse = BC = 2k


So,


Now, we know that,



Side adjacent to angle B = AB =1k


Hypotenuse = BC =2k


So,


Now, sin A. cos B + cos A. sin B


Putting the values of sin A, sin B cos A and Cos B, we get





=1



Question 55.

Find the value of

, if sin A = and cos B=


Answer:

Given


We know that,



Or



Let,


Side opposite to angle A = k


and Hypotenuse = k√2


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (P)2 + (B)2 = (H)2


⇒ (k)2 + (B)2 = (k√2)2


⇒ k2 + (B)2 = 2k2


⇒ (B)2 = 2k2 – k2


⇒ (B)2 = k2


⇒ B =√k2


⇒ B =±k [taking positive square root since, side cannot be negative]


So, Base = k


Now, we have to find the value of tan A


We know that,



So,


Now, we have to find the tan B


We know that,




Let,


Side adjacent to angle B =k√3


Hypotenuse =2k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (B)2 + (P)2 = (H)2


⇒ (k√3)2 + (P)2 = (2k)2


⇒ 3k2 + (P)2 = 4k2


⇒ (P)2 = 4k2 –3 k2


⇒ (P)2 = k2


⇒ P =√k2


⇒ P =±k [taking positive square root since, side cannot be negative]


So, Perpendicular = k


Now, we have to find the value of sin B


We know that,



So,


Now,





Now, multiply and divide by the conjugate of √3 – 1, we get



[∵ (a – b)(a+b) = (a2 – b2)]




⇒ 2+√3



Question 56.

Find the value of

sec A. tan A+tan2A – cosec A, if tan A =2


Answer:

Given: tan A = 2 ⇒ tan2A = 4

We know that, sec2 A = 1+ tan2A


⇒ sec2 A = 1 + 4


⇒ sec2 A = 5


⇒ sec A =√5



Now, we know that tan A



⇒ 2 =√5 sin A




Now, putting all the values in the given equation, we get


sec A. tan A+tan2A – cosec A






Question 57.

Find the value of

, if cosec A = 2


Answer:

Given: cosec A =2

Now, we have to find


First, we simplify the above given trigonometry equation, we get




Taking the LCM, we get



[∵ cos2θ +sin2 θ = 1]



[∵ cosec θ ]


⇒ cosec A


⇒ 2



Question 58.

If , prove that : 3 cos B – 4cos3 B = 0


Answer:

Given:


We know that,



Or



Let,


Perpendicular =AB =k


and Hypotenuse =AC =2k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


In right angled ∆ ABC, we have


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (k)2 + (BC)2 = (2k)2


⇒ k2 + (BC)2 = 4k2


⇒ (BC)2 = 4k2 –k2


⇒ (BC)2 = 3k2


⇒ BC =√3k2


⇒ BC =k√3


So, BC = k√3


Now, we have to find the value of cos B


We know that,



Side adjacent to angle B or base = BC = k√3


Hypotenuse = AC =2k


So,


Now, LHS = 3 cos B – 4cos3 B





=RHS


Hence Proved



Question 59.

If , prove that: 3sinθ – 4sin3θ = 1.


Answer:


We know that,




Let AB =k√3 and BC = 2k


In right angled ∆ABC, we have


B2 + P2 = H2


⇒ (k√3)2 + P2 = (2k)2


⇒ P2 + 3k2 = 4k2


⇒ P2 = 4k2 – 3k2


⇒ P2 = k2


⇒ P =√k2


⇒ P = ±k


⇒ P = k [taking positive square root since, side cannot be negative]


Now,


We know that,



Or



Now, LHS = 3sin θ – 4sin3 θ







⇒ 1 = RHS


Hence Proved



Question 60.

If , prove that :


Answer:

Given:



We know that,




Let,


BC = 4k and AC = 5k


where, k is any positive integer.


In right angled ∆ABC, we have


(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]


⇒ (AB)2 + (4k)2 = (5k )2


⇒ (AB)2 + 16k2 = 25k2


⇒ (AB)2 = 25k2 – 16k2


⇒ (AB)2 = 9k2


⇒ AB = √9k2


⇒ AB =±3k [taking positive square root since, side cannot be negative]


Now, we have to find the value of other trigonometric ratios.


We, know that








Now, LHS








Now, RHS =





∴ LHS = RHS


Hence Proved



Question 61.

, prove that : tan2B – sin2 B=sin4 B sec2 B.


Answer:


We know that,



Or



Let,


Side adjacent to angle B =AB = 12k


Side opposite to angle B =BC = 5k


where, k is any positive integer


Firstly we have to find the value of AC.


So, we can find the value of AC with the help of Pythagoras theorem


⇒ (AB)2 + (BC)2 = (AC)2


⇒ (12k)2 + (5k)2 = (AC)2


⇒ (AC)2 = 144 k2 +25 k2


⇒ (AC)2 = 169 k2


⇒ AC =√169 k2


⇒ AC =±13k


But side AC can’t be negative. So, AC = 13k


Now, we will find the sin θ



Side opposite to angle B = BC = 5k


and Hypotenuse = AC = 13k


So,


Now, we know that,



Side adjacent to angle B = AB =12k


Hypotenuse = AC =13k


So,




Now, LHS = tan2B – sin2 B







Now, RHS = sin4 B sec2 B






Now, LHS = RHS


Hence Proved



Question 62.

If , prove that =


Answer:

Given:

Now, squaring both the sides, we get








⇒ p2 = q2 tan2θ …(1)


Now, solving LHS


Putting the value of p2 in the above equation, we get




[∵ 1+ tan2 θ = sec2 θ]




(from Eq. (1))



[∵(a + b) (a – b) = (a2 – b2)]



Now, we solve the RHS





[∵ 1+ tan2 θ = sec2 θ]




∴ LHS = RHS


Hence Proved



Question 63.

In the given figure, BC = 15 cm and sin B = 4/5, show that



Answer:

Given: BC =15cm and

We know that,



Or



Let,


Side opposite to angle B = 4k


and Hypotenuse = 5k


where, k is any positive integer


So, by Pythagoras theorem, we can find the third side of a triangle


⇒ (AC)2 + (BC)2 = (AB)2


⇒ (4k)2 + (BC)2 = (5)2


⇒ 16k2 + (BC)2 = 25k2


⇒ (BC)2 = 25 k2 –16 k2


⇒ (BC)2 = 9 k2


⇒ BC =√9 k2


⇒ BC =±3k


But side BC can’t be negative. So, BC = 3k


Now, we have to find the value of cos B and tan B


We know that,



Side adjacent to angle B = BC =3k


Hypotenuse = AB =5k


So,


Now, tan B


We know that,




side opposite to angle B = AC =4k


Side adjacent to angle B = BC =3k


So,


Now,





= –1 = RHS


Hence Proved



Question 64.

In the given figure, find 3 tan θ – 2 sin α + 4 cos α.



Answer:

First of all, we find the value of RS

In right angled ∆RQS, we have


(RQ)2 + (QS)2 = (RS)2


⇒ (8)2 + (6)2 = (RS)2


⇒ 64 + 36 = (RS)2


⇒ RS =√100


⇒ RS =±10 [taking positive square root, since side cannot be negative]


⇒ RS =10




Now, we find the value of QP


In right angled ∆RQP


(RQ)2 + (QP)2 = (RP)2


⇒ (8)2 + (QP)2 = (17)2


⇒ 64 + (QP)2 = 289


⇒ (QP)2 =289–64


⇒ (QP)2 =225


⇒ QP =√225


⇒ QP =±15 [taking positive square root, since side cannot be negative]


⇒ QP =15


tan θ


Now, 3 tan θ – 2 sinα + 4cos α








Question 65.

In the given figure ABC is right angled at B and BD is perpendicular to AC. Find (i) cos θ, (ii) cot α.



Answer:

Firstly, we find the value of AC

In right angled ∆ABC


(AB)2 + (BC)2 = (AC)2


⇒ (12)2 + (5)2 = (AC)2


⇒ 144+25 =(AC)2


⇒ (AC)2 =169


⇒ AC =√169


⇒ AC =±13


⇒ AC =13 [taking positive square root since, side cannot be negative]


(i)


(ii)



Question 66.

If 5 sin2 θ + cos2 θ = 2, find the value of sin θ.


Answer:

Given: 5 sin2 θ + cos2 θ = 2

⇒ 5 sin2 θ + (1– sin2 θ) = 2 [∵ sin2 θ + cos2 θ = 1]


⇒ 5 sin2 θ + 1 – sin2 θ = 2


⇒ 4 sin2 θ = 2 – 1


⇒ 4 sin2 θ = 1






Question 67.

If 7 sin2 θ + 3 cos2 θ =4, find the value of tan θ.


Answer:

Given : 7 sin2 θ + 3 cos2 θ =4

⇒ 7 sin2 θ + 3(1– sin2 θ) = 4 [∵ sin2 θ + cos2 θ = 1]


⇒ 7 sin2 θ + 3 –3 sin2 θ = 4


⇒ 4 sin2 θ = 4 – 3


⇒ 4 sin2 θ = 1





Put the value of in given equation, we get










Now, we know that tan θ





Question 68.

If 4 cos θ + 3 sin θ = 5, find the value of tan θ.


Answer:

Given : 4 cos θ+ 3 sin θ = 5

Squaring both the sides, we get


⇒ (4 cos θ+ 3 sin θ)2 = 25


⇒ 16 cos2 θ + 9 sin2 θ + 2(4cos θ)(3sin θ)= 25 [∵ (a + b)2 =a2 +b2 +2ab]


⇒ 16 cos2 θ + 9 sin2 θ + 24 cosθ sinθ = 25


Divide by cos2 θ, we get



⇒ 16 + 9tan2 θ + 24 tanθ = 25sec2 θ


⇒ 16 + 9tan2 θ + 24 tanθ = 25(1 + tan2 θ) [∵ 1+ tan2θ = sec2 θ]


⇒ 16 + 9tan2 θ + 24 tanθ = 25+ 25 tan2 θ


⇒ 16tan2 θ – 24tanθ + 9 = 0


⇒ 16tan2 θ – 12 tanθ – 12 tanθ +9 = 0


⇒ 4tanθ (4tan θ – 3) – 3(4tan θ – 3) = 0


⇒ (4tan θ – 3)2 = 0




Question 69.

If 7 sin A + 24 cos A = 25, find the value of tan A.


Answer:

Given : 7 sin A + 24 cos A = 25

Squaring both the sides, we get


⇒ (7 sin A + 24 cos A)2 = 625


⇒ 49 sin2 A +576 cos2 A + 2(7sin A) (24cos A) = 625 [∵ (a + b)2 =a2 +b2 +2ab]


⇒ 49 sin2 A +576 cos2 A + 336 cosA sinA = 625


Divide by cos2 θ, we get



⇒ 49tan2 A +576+ 336 tanA = 625sec2 A


⇒ 49tan2 A +576+ 336 tanA = 625(1 + tan2 A) [∵ 1+ tan2θ = sec2 θ]


⇒ 49tan2 A +576+ 336 tanθA = 625+625 tan2 A


⇒ 576tan2 A – 336tanA + 49 = 0


⇒ 576tan2 A – 168 tanA – 168 tanA +49 = 0


⇒ 24tanθ (24tan A – 7) – 7(24tan A – 7) = 0


⇒ (24tan A – 7)2 = 0




Question 70.

If 9 sin θ + 40 cos θ= 41, find the value of cos θ and cosec θ


Answer:

Given: 9 sin θ + 40 cos θ= 41

⇒ 9sinθ = 41 – 40 cosθ …(i)


Squaring both sides, we get


⇒ 81sin2 θ = 1681+1600 cos2 θ – 2(41) (40cos θ) [∵ (a – b)2 =a2 +b2 –2ab]


⇒ 81 (1– cos2 θ) =1681+1600 cos2 θ – 3280cosθ


⇒ 81 – 81cos2 θ = 1681 +1600cos2 θ – 3280 cosθ


⇒ 1681cos2 θ –3280cos θ +1600 = 0


⇒ (41)2 cos2 θ – 2(41) (40cos θ) + (40)2 = 0


⇒ (41cos θ – 40 )2 = 0



Now, putting the value of cos θ in Eq. (i), we get








Question 71.

If tan A + sec A = 3, find the value of sin A.


Answer:

tan A + sec A = 3

⇒ tanA = 3 – secA


Squaring both the sides, we get


⇒ tan2 A =(3 – secA)2


⇒ tan2 A = 9 + sec2A – 6sec A


⇒ sec2 A – 1 = 9 + sec2A – 6sec A [∵ 1+ tan2 A = sec2 A]


⇒ –1 – 9 = –6secA


⇒ – 10 = –6sec A





Now, tan A + sec A = 3




⇒ sin A = 3cosA – 1






Question 72.

If cosec A + cot A = 5, find the value of cos A.


Answer:

cosec A + cot A = 5

⇒ cotA = 5 – cosecA


Squaring both the sides, we get


⇒ cot2 A =(5 – cosecA)2


⇒ cot2 A = 25 + cosec2A – 10cosec A


⇒ cosec2 A – 1 = 25 + cosec2A – 10cosec A [∵ 1+ cot2 A = cosec2 A]


⇒ –1 – 25 = –10cosecA


⇒ – 26 = –10cosec A





Now, cosec A + cot A = 5









Question 73.

If tan θ + sec θ = x, show that sin θ=


Answer:

tan θ+ sec θ = x

⇒ tan θ = x – sec θ


Squaring both sides, we get


⇒ tan2 θ =(x – secθ)2


⇒ tan2 θ = x2 + sec2θ – 2xsec θ


⇒ sec2 θ – 1 = x2 + sec2θ – 2xsec θ [∵ 1+ tan2 A = sec2 A]


⇒ –1 – x2 = –2xsecθ



Now,


tan θ = x – sec θ






= RHS


Hence Proved



Question 74.

If cos θ +sin θ=1, prove that cos θ – sin θ = ± 1


Answer:

Using the formula,

(a+b)2 + (a – b)2 = 2(a2+b2)


⇒ (cos θ +sin θ)2 + (cos θ – sin θ)2 = 2(cos2θ + sin2 θ)


⇒ 1 + (cos θ – sin θ)2 = 2(1)


⇒ (cos θ – sin θ)2 = 2 –1


⇒ (cos θ – sin θ)2 = 1


⇒ (cos θ – sin θ) =√1


⇒ (cos θ – sin θ) = ±1




Exercise 4.2
Question 1.

Find the value of the following :

(i) sin 30o + cos 60o

(ii) sin2 45o+cos245o

(iii) sin 30o + cos 60o – tan45o

(iv)

(v) tan 60o x cos30o


Answer:

(i) sin 30o + cos 60o


We know that,


>



So,
sin(30o) + cos(60o)



=1


(ii) sin2 45o+cos245o


We know that,




So, sin2 45o+cos245o




=1


(iii) sin 30o + cos 60o – tan45o





So,
sin 30o + cos 60o – tan 45o




=0


(iv)


We know that


tan(60o) = √3


So,





=√4


= 2


(v) tan 60o × cos30o


tan(60o) = √3



So,


tan 60o × cos30o





Question 2.

If θ = 45°, find the value of

(i)

(ii) cos2 θ - sin2 θ


Answer:

(i)


Given θ =45°


We know that,


tan(45o) = 1




= 1+ 2


= 3


(ii) cos2 θ – sin2 θ


Given θ = 45°




So, cos2 45° – sin2 45°



= 0



Question 3.

Find the numerical value of the following :

sin45°.cos45° – sin230°.


Answer:

We know that,





Now, putting the values






Question 4.

Find the numerical value of the following :



Answer:

We know that,




tan (60°) = √3


Now putting the values;






Multiplying and dividing by the conjugate of (1+√3)



[∵(a)2 – (b)2 = (a+b)(a-b)]



Multiplying and dividing by (-2)


= 3 - √3



Question 5.

Find the numerical value of the following :



Answer:

We know that,




tan (60o) =


Now putting the values;




= 1



Question 6.

Find the numerical value of the following :



Answer:

We know that




Now putting the value, we get



=


=






Question 7.

Find the numerical value of the following :

sin2 60° – cos2 60°


Answer:

We know that,




Now putting the value;






Question 8.

Find the numerical value of the following :

4sin2 30° + 3 tan 30° – 8 sin 45° cos 45°


Answer:

We know that,






Now putting the value, we get




= 1 + 1 – 4


= -2



Question 9.

Find the numerical value of the following :

2sin230° – 3cos2 45° + tan2 60ׄ°


Answer:

We know that,




Tan (60o) = √3


Now putting the value;







=2



Question 10.

Find the numerical value of the following :

sin 90° + cos 0° + sin 30° + cos 60°


Answer:

We know that,


Sin (90o) = 1


Cos (0o) = 1




Now putting the value;





= 3



Question 11.

Find the numerical value of the following :

sin 90° – cos 0° + tan 0° + tan 45°


Answer:

We know that


Sin (90o) = 1


Cos (0o) = 1


Tan(0o) = 0


Tan(45o) = 1


Now putting the value, we get


= 1 – 1 + 0 + 1


= 1



Question 12.

Find the numerical value of the following :

where π = 180°


Answer:

We know that


Cos (0o) = 1


Tan (45o) = 1



Now putting the values;







Question 13.

Find the numerical value of the following :



Answer:

We know that,




Cot (45o) = 1


Sin (90o) = 1


Now putting the values, we get



= 1-3+2


=0



Question 14.

Find the numerical value of the following :



Answer:

We can write the above equation as:


= 4 cot2 60o + sec2 30o – sin2 45o …(a)





Now putting the values in (a);







Question 15.

Find the numerical value of the following :

cos60° . cos 30° – sin 60° . sin 30°


Answer:

We know that,






Now putting the values, we get




= 0



Question 16.

Find the numerical value of the following :



Answer:

We know that,





cos(90o) = 0


Now putting the values;





= 3



Question 17.

Evaluate the following :

sin30°.cos45° + cos30°.sin45°


Answer:

We know that,






Now putting the values, we get






Question 18.

Evaluate the following :

cosec230°.tan245° – sec260°


Answer:

We know that


cosec (30o) = 2


Tan(45o) = 1


sec (60 o) = 2


Now putting the values;


= (2)2 × (1)2 - (2)2


= 4 – 4


= 0



Question 19.

Evaluate the following :

2sin230°.tan60° – 3cos260°.sec230°


Answer:

We know that



tan (60o) = √3




Now putting the values;







Question 20.

Evaluate the following :

tan60° . cosec245° + sec260°.tan45°


Answer:

We know that


tan (60o) = √3


cosec (45o) = √2


sec (60 o) = 2


tan(45o) = 1


Now putting the values;


= (√3) × (√2)2 + (2)2 × (1)


= 2 +4


=2 (√3 + 2)



Question 21.

Evaluate the following :

tan30°.sec45° + tan60°.sin30°


Answer:

We know that



sec (45o) = √2


tan (60o) = √3



Now putting the values, we get







Question 22.

Evaluate the following :

cos30°.cos45° – sin30°.sin45°


Answer:

We know that






Now putting the values, we get




Multiplying and dividing by ), we get



=



Question 23.

Evaluate the following :



Answer:

We know that





tan (60o) = √3


tan(45o) = 1


Now putting the values;








Question 24.

Evaluate the following :



Answer:

We know that


tan (60o) =




cos(90o) = 0


cosec (30o) = 2


sec (60 o) = 2


cot (30o) = √3


Now putting the values, we get


=


=


=


= 9



Question 25.

Evaluate the following :



Answer:

We know that






tan (45o) = 1


Now putting the values, we get








Question 26.

Prove the following :

When α =60°


Answer:

Solving, L.H.S.


= [(a)2 – (b)2 = (a+b)(a-b)]


=


We know that




Putting the values, we get





= 3 = R.H.S.



Question 27.

Prove the following :

cos(A – B) = cos A. cos B + sinA . sin B if A=B=60o


Answer:

Solving, L.H.S.


= cos (60o – 60o) [Putting the value A=B=60o]


= cos (0o)


= 1


Solving, R.H.S.


= cos (60o) × cos (60o) + sin (60o) × sin (60o) [Putting the value A=B=60o]


= cos2(60o) + sin2(60o)


We know that,







= 1


∴ LHS = RHS


Hence Proved



Question 28.

Prove the following :

4(sin430° + cos4 60°) – 3(cos2 45° – sin290°) = 2


Answer:

We know that,





Sin (90o) = 1


Now solving, L.H.S.


= 4[{(sin 30o)2}2 + {(cos 60o)2}2] – 3[(cos 45o)2 - (sin 90o)2]


Putting the values








=2 = R.H.S.


Hence Proved



Question 29.

Prove the following :

sin90° = 2sin45°.cos45°


Answer:

We know that,


sin (90o) = 1




Taking LHS = sin 90° = 1


Now, taking RHS




= 1


= R.H.S.


Hence Proved



Question 30.

Prove the following :

cos60° = 2cos230° – 1 = 1 – 2 sin230°


Answer:

We know that,





Taking LHS = cos 60°


Now, solving RHS = 2cos2 30° - 1 , we get







= RHS


Now taking RHS = 1- 2sin2 30°






= RHS


Hence, proved.



Question 31.

Prove the following :

cos90° = 1 – 2 sin245° = 2cos245° – 1


Answer:

We know that


cos(90o) = 0




taking LHS = cos 90° = 0


Now solving RHS 1- 2sin2 45°




= 1- 1


= 0


= RHS


Now, solving RHS = 2cos2 45° - 1 , we get




= 1- 1


= 0


Hence, proved.



Question 32.

Prove the following :

sin30°.cos60° + cos30°.sin60° = sin90°


Answer:

We know that






sin (90o) = 1


Taking LHS =





= 1


Now, RHS = sin 90° = 1


∴ LHS = RHS


Hence, proved.



Question 33.

Prove the following :

cos60°.cos30° – sin60°. sin30° = cos 90°


Answer:

We know that






cos(90o) = 0


Taking LHS




= 0


Now, RHS = cos 90° = 0


∴ LHS =RHS


Hence, proved.



Question 34.

Prove the following :



Answer:

We know that,




Taking LHS =


Now, solving RHS







∴ L.H.S. = R.H.S.


Hence, proved.



Question 35.

Prove the following :



Answer:

We know that


tan(60o) = √3



Taking LHS






Now, RHS =


∴L.H.S. = R.H.S.


Hence, proved.



Question 36.

Prove the following :



Answer:




Taking LHS





Multiplying and Dividing, LHS by (√3- 1)



[(a)2 – (b)2 = (a+b)(a-b)]





Multiplying and Dividing, LHS by 2


= 2- √3


Now, RHS




= 2- √3


∴ LHS = RHS


Hence, proved.



Question 37.

Prove the following :



Answer:

We know that






Taking LHS





Now, RHS=


∴ LHS =RHS


Hence Proved



Question 38.

Prove the following :



Answer:

We know that






Taking LHS =


Now, solving RHS = 2 sin 30° cos 30°




= LHS


Now, RHS







∴ LHS =RHS


Hence proved



Question 39.

If A=60o and B = 30o, verify that :

cos (A+B) = cos A cos B – sin A sin B


Answer:

Given: A=60o and B =30o

Now, LHS = Cos (A+B)


⇒ Cos (60 o + 30 o)


⇒ Cos (90 o)


⇒ 0 [∵ cos 90 o = 0]


Now, RHS = Cos A Cos B – Sin A Sin B


⇒ cos(60 o) cos(30 o) – sin(60 o) sin (30 o)



⇒ 0


∴ LHS = RHS


Hence Proved



Question 40.

If A=60o and B = 30o, verify that :

sin (A – B) = sin A cos B – cos A sin B


Answer:

Given: A=60o and B =30o

Now, LHS = Sin (A-B)


⇒ Sin (60 o - 30 o)


⇒ Sin (30 o)



Now, RHS = Sin A Cos B – Cos A Sin B


⇒ sin(60 o) cos(30 o) – cos(60 o) sin (30 o)





∴ LHS = RHS


Hence Proved



Question 41.

If A=60o and B = 30o, verify that :

tan (A – B) =


Answer:

Given: A=60o and B =30o

Now, LHS = tan (A-B)


⇒ tan (60 o - 30 o)


⇒ tan (30 o)



Now, RHS






∴ LHS = RHS


Hence Proved



Question 42.

If A = 30o, verify that :

sin 2A = 2 sin A cos A


Answer:

Given: A =30o

Now, LHS = sin 2(30o)


⇒ sin 60o



Now, RHS = 2 sin A cos A


⇒ 2 sin (30o) cos (30o)




∴ LHS = RHS


Hence Proved



Question 43.

If A = 30o, verify that :

cos 2A = 1-2 sin2A=2cos2 A – 1


Answer:

Given: A =30o

Now, LHS = cos 2(30o)


⇒ cos 60o



Now, RHS = 1- 2sin2 A


⇒ 1- 2sin2 (30o)






Now, RHS = 2cos2 A – 1


⇒ 2cos2 (30o) - 1






∴ LHS = RHS


Hence Proved



Question 44.

If θ = 30°, verify that :

sin 3θ = 3 sinθ – 4 sin3θ


Answer:

Given: θ =30o

Now, LHS = sin 3(30o)


⇒ sin 90o


= 1


Now, RHS = 3 sin θ - 4 sin3 θ


⇒ 3 sin (30o) - 4 sin3 (30o)




= 1


∴ LHS = RHS


Hence Proved



Question 45.

If θ = 30°, verify that :

cos3θ = 4cos3θ – 3cosθ


Answer:

Given: θ =30o


Now, LHS = cos 3(30o)


⇒ cos 90o


= 0


Now, RHS = 4 cos3 θ - 3 cos θ


⇒ 4 cos3 (30o) - 3 cos (30o)




= 0


∴ LHS = RHS


Hence Proved



Question 46.

If sin (A + B) = 1 and cos (A – B) = , then find A and B.


Answer:

Given : sin (A+B) =1


⇒ Sin(A+B) = sin (90 o) [∵ sin (90 o)=1]


On equating both the sides, we get


A + B = 90 o …(1)


And


⇒ cos(A – B) = cos (30 o)


On equating both the sides, we get


A – B = 30 o …(2)


On Adding Eq. (1) and (2), we get


2A = 120 o


⇒ A = 60 o


Now, Putting the value of A in Eq.(1), we get


60 o + B =90 o


⇒ B = 30 o


Hence, A = 60 o and B = 30 o



Question 47.

If sin (A + B) = 1 and cos (A – B) = 1, find A and B.


Answer:

Given : sin (A+B) =1

⇒ Sin(A+B) = sin (90 o) [∵ sin (90 o) =1]


On equating both the sides, we get


A + B = 90 o …(1)


And cos (A – B) = 1


⇒ cos(A – B) = cos (0 o) [∵ cos(0 o) = 1]


On equating both the sides, we get


A – B = 0 o …(2)


On Adding Eq. (1) and (2), we get


2A = 90 o


⇒ A = 45 o


Now, Putting the value of A in Eq.(1), we get


45 o + B =90 o


⇒ B = 45 o


Hence, A = 45 o and B = 45 o



Question 48.

If sin (A + B) = cos (A – B) = , fins A and B.


Answer:

Given :

⇒ Sin(A+B) = sin (60 o)


On equating both the sides, we get


A + B = 60 o …(1)


And


⇒ cos(A – B) = cos (30 o)


On equating both the sides, we get


A – B = 30 o …(2)


On Adding Eq. (1) and (2), we get


2A = 90 o


⇒ A = 45 o


Now, Putting the value of A in Eq.(1), we get


45 o + B =60 o


⇒ B = 15 o


Hence, A = 45 o and B = 15 o



Question 49.

If sin (A – B) = 1/2, cos(A + B) = 1/2; 0o<A+B<90o; A > B, find A and B.


Answer:

Given :

⇒ Sin(A-B) = sin (30 o)


On equating both the sides, we get


A - B = 30 o …(1)


And


⇒ cos(A + B) = cos (60 o)


On equating both the sides, we get


A + B = 60 o …(2)


On Adding Eq. (1) and (2), we get


2A = 90 o


⇒ A = 45 o


Now, Putting the value of A in Eq.(2), we get


45 o + B =60 o


⇒ B = 15 o


Hence, A = 45 o and B = 15 o



Question 50.

Show by an example that

cos A – cos B ≠ cos (A – B)


Answer:

Let A = 60o and B = 30o, then

L.H.S.


R. H. S.


L.H.S. R.H.S



Question 51.

Show by an example that

cos C + cos D ≠ cos (C + D)


Answer:

Let C = 60o and D = 30o, then

L.H.S. = cos C + cos D = cos 60o + cos 30o



R. H. S. = cos (C+D) = cos (60o + 30o) = cos 90o= 0


L.H.S. R.H.S



Question 52.

Show by an example that

sin A + sin B ≠ sin (A + B)


Answer:

Let A = 60o and B = 30o, then

L.H.S. = sin A + sin B = sin 60o + sin 30o



R. H. S. = sin (A + B) = sin (60o + 30o) = sin 90o =1


∴ L.H.S. R.H.S



Question 53.

Show by an example that

sin A – sin B ≠ sin (A – B)


Answer:

Let A = 60o and B = 30o, then

L.H.S. = sin A - sin B = sin 60o - sin 30o



R. H. S. = sin (A - B) = sin (60o - 30o) = sin 30o



∴ L.H.S. R.H.S



Question 54.

In a right hypotenuse AC = 10 cm and ∠A = 60°, then find the length of the remaining sides.


Answer:


Given: ∠A = 60o and AC = 10cm


Now,


Now, we know that



⇒ BC = 5√3 cm


In right angled ∆ABC , we have


⇒ (AB)2 + (BC)2 =(AC)2 [by using Pythagoras theorem]


⇒ (AB)2 + (5√3)2 = (10)2


⇒ (AB)2 +(25×3) =100


⇒ (AB)2 +75 = 100


⇒ (AB)2 = 100 – 75


⇒ (AB)2 = 25


⇒ AB =√25


⇒ AB = ±5


⇒ AB = 5cm [taking positive square root since, side cannot be negative]


∴ Length of the side AB = 5cm and BC =5√3 cm



Question 55.

In a rectangle ABCD, BD : BC = 2 : √3, then find ∠BDC in degrees.


Answer:


Given BD: BC = 2 : √3


We have to find the ∠BDC


We know that,





⇒ sin θ = sin 60o


⇒ θ = 60o




Exercise 4.3
Question 1.

Express the following as trigonometric ratio of complementary angle of θ.

(i) cos θ (ii) sec θ

(iii) cot θ (iv) cosec θ

(v) tan θ


Answer:


(i) We know that



⇒ cosθ = sin (90° - θ)


(ii) We know that



(iii) We know that



(iv) We know that



(v) We know that




Question 2.

Express the following as trigonometric ratio of complementary angle of 90o- θ.

(i) tan (90o- θ)

(ii) cos (90o- θ)


Answer:

(i) We know that,




[∵ sin 90° = 1 and cos 90° = 0]



⇒ tan (90° - θ ) = cot θ


(ii) We know that.


Cos(A - B) = cos A cos B + sin A sin B


⇒ cos (90o- θ) = cos 90° cos θ + sin 90° sin θ


⇒ cos (90o- θ) = (0) cos θ + (1) sin θ


⇒ cos (90o- θ) = sin θ



Question 3.

Fill up the blanks by an angle between 0oand 90o:

(i) sin 70o = cos(…) (ii) sin 35o = cos(…)

(iii) cos 48o=sin (…) (iv) cos 70o = sin (…)

(v) cos 50o = sin (…) (vi) sec 32o=cosec(…)


Answer:

(i) We know that


Sin θ = cos (90° - θ)


Here, θ = 70°


⇒ sin 70° = cos(90° -70°)


⇒ sin 70° = cos 20°


(ii) We know that


Sin θ = cos (90° - θ)


Here, θ = 35°


⇒ sin 35° = cos(90° -35°)


⇒ sin 35° = cos 55°


(iii) cos θ = sin (90° - θ)


Here, θ = 48°


⇒ cos 48° = sin (90° - 48°)


⇒ cos 48° = sin 42°


(iv) cos θ = sin (90° - θ)


Here, θ = 70°


⇒ cos 70° = sin (90° - 70°)


⇒ cos 70° = sin 20°


(v) cos θ = sin (90° - θ)


Here, θ = 50°


⇒ cos 50° = sin (90° - 50°)


⇒ cos 50° = sin 40°


(vi) sec θ = cosec (90°-θ)


Here, θ = 32°


⇒ sec 32° = cosec(90° – 32°)


⇒ sec 32° = cosec 58°



Question 4.

If A+B=90o, then fill up the blanks with suitable trigonometric ratio of complementary angle of A or B.

(i) sin A =…. (ii) cos B =…

(iii) sec A =… (iv) tan B =…

(v) cosec B =… (vi) cot A=…


Answer:

(i) Here, A+B = 90°


⇒ A = 90° - B


Multiplying both sides by Sin, we get


Sin A = Sin (90° - B)


⇒ sin A = Cos B [∵ cos θ = sin (90° - θ)]


(ii) Here, A+B = 90°


⇒ B = 90° - A


Multiplying both sides by cos, we get


Cos B = cos (90° - A)


⇒ cos B = sin A [∵ Sin θ = cos (90° - θ)]


(iii) Here, A+B = 90°


⇒ A = 90° - B


Multiplying both sides by sec, we get


Sec A = Sec (90° - B)


⇒ sec A = Cosec B [∵ cosec θ = sec (90° - θ)]


(iv) Here, A+B = 90°


⇒ B = 90° - A


Multiplying both sides by tan, we get


tan B = tan (90° - A)


⇒ tan B = cot A [∵ cot θ = tan (90° - θ)]


(v) Here, A+B = 90°


⇒ B = 90° - A


Multiplying both sides by cosec, we get


Cosec B = cosec (90° - A)


⇒ cosec B = sec A [∵ sec θ = cosec (90° - θ)]


(vi) Here, A+B = 90°


⇒ A = 90° - B


Multiplying both sides by Sin, we get


cotA = cot (90° - B)


⇒ cot A = tan B [∵ tan θ = cot (90° - θ)]



Question 5.

If sin 37o=a, then express cos 53o in terms of a.


Answer:

Given sin 37° = a

We know that sin θ = cos (90° - θ)


Here, θ = 37°


⇒ cos (90° - 37°) = a


⇒ cos 53° = a



Question 6.

If cos 47o=a, then express sin 43o in terms of a.


Answer:

Given cos 47° = a

We know that cos θ = sin (90° - θ)


Here, θ = 47°


⇒ sin (90° - 47°) = a


⇒ sin 43° = a



Question 7.

If sin 52o=a, then express sin 38o in terms of a.


Answer:

Given sin 52° = a

We know that sin θ = cos (90° - θ)


Here, θ = 52°


⇒ cos (90° - 52°) = a


⇒ cos 38° = a



Question 8.

If sin 56o=x, then express sin 34o in terms of x.


Answer:

Given sin 56° = x

We know that sin θ = cos (90° - θ)


Here, θ = 56°


⇒ cos (90° - 56°) = x


⇒ cos 34° = x



Question 9.

Find the value of

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) sin 54° – cos 36° (x)

(xi) cosec 31° – sec 59° (xii)

(xiii)


Answer:

(i) [∵ cos θ = sin (90° - θ)]


(ii) [∵ cos θ = sin (90° - θ)]


(iii) [∵ Sin θ = cos (90° - θ)]


(iv) [∵ Sin θ = cos (90° - θ)]


(v) [∵ Sin θ = cos (90° - θ)]


(vi) [∵ Sin θ = cos (90° - θ)]


(vii) [∵ cos θ = sin (90° - θ)]


(viii) [∵ cos θ = sin (90° - θ)]


(ix) sin 54° - sin(90° - 36°) [∵ cos θ = sin (90° - θ)]


⇒ sin 54° - sin 54°


⇒ 0


(x) [∵ tan θ = cot (90° - θ)]


(xi) cosec 31° - cosec(90° - 59°) [∵ sec θ = cosec (90° - θ)]


⇒ cosec 31° - cosec 31°


⇒ 0


(xii) [∵ Sin θ = cos (90° - θ)]


(xiii) [∵ tan θ = cot (90° - θ)]



Question 10.

Fill up the blanks :

(i) If sin 50o=0.7660, then cos 40o=……

(ii) If cos 44o = 0.7193, then sin 46o=…..

(iii) sin 50o+cos 40o = 2 sin (………)

(iv) Value of is ………


Answer:

(i) Given: sin 50o=0.7660


We know that


Sin θ = cos (90° - θ)


⇒ cos (90° - 50°) = 0.7660


⇒ cos 40° = 0.7660


(ii) Given: cos 44° = 0.7193


We know that,


cos θ = sin (90° - θ)


⇒ sin (90° - 44°) = 0.7193


⇒ sin 46° = 0.7193


(iii) LHS = sin 50° + cos 40°


⇒ sin 50° + sin (90° - 40°) [∵ cos θ = sin (90° - θ)]


⇒ sin 50° + sin 50°


⇒ 2sin 50°


(iii) [∵ Sin θ = cos (90° - θ)]



Question 11.

If A + B = 90o, then express cos B in terms of simplest trigonometric ratio of A.


Answer:

Given: A+B =90°

⇒ B = 90° - A


Multiplying both side by cos, we get


= cos B = Cos (90° - A)


⇒ cos B = sin A [∵ Sin θ = cos (90° - θ)]



Question 12.

If X + Y = 90o, then express cos X in terms of simplest trigonometric ratio of Y.


Answer:

Given: X+Y =90°

⇒ X= 90° - Y


Multiplying both side by cos, we get


= cos X = Cos (90° - Y)


⇒ cos X = sin Y [∵ Sin θ = cos (90° - θ)]



Question 13.

If A + B = 90o, sin A = a, sin B = b, then prove that

(a) a2 + b2 = 1

(b)


Answer:

(a) LHS = a2 +b2

= (sin A)2 + (sin B)2


= sin2 A + sin2 B


= sin2 A + sin2 (90° - A) [∵ cos θ = sin (90° - θ)]


= sin2 A + cos2 A


= 1 [∵ sin2 θ + cos2 θ = 1]


=RHS


Hence Proved


(b) LHS = tan A


Now, taking RHS



{given, A +B = 90°)


[∵ cos θ = sin (90° - θ)]


⇒ tan A


=LHS


∴ LHS = RHS


Hence Proved



Question 14.

Show that sin(50° + θ) – cos (40° – θ) = 0.


Answer:

LHS = sin (50° + θ) – cos (40° - θ)

We know that,


Sin A = cos (90° - A)


Here, A = 50° + θ


⇒ cos {90° -( 50° + θ)} – cos (40° - θ)


⇒ cos (40° - θ) – cos (40° - θ)


= 0 = RHS


Hence Proved



Question 15.

Prove that


Answer:

Taking LHS,


[∵ cos θ = sin (90° - θ) and Sin θ = cos (90° - θ)]



⇒ 1+ 1


= 2 = RHS


Hence Proved



Question 16.

In a ∆ABC prove that



Answer:


In ∆ABC,


Sum of angles of a triangle = 180°


A + B + C = 180°


⇒ B + C = 180° - A





…(1)


Taking LHS



(from eq (1))


[∵ sin (90° - θ) = cos θ]


=RHS


Hence Proved



Question 17.

In a ∆ABC prove that



Answer:


In ∆ABC,


Sum of angles of a triangle = 180°


A + B + C = 180°


⇒ B + C = 180° - A





…(2)


Taking LHS



(from eq (2))


[∵ tan (90° - θ) = cot θ]


=RHS


Hence Proved



Question 18.

In a ∆ABC prove that



Answer:


In ∆ABC,


Sum of angles of a triangle = 180°


A + B + C = 180°


⇒ A + B = 180° - C





…(3)


Taking LHS



(from eq (3))


[∵ cos (90° - θ) = sin θ]


=RHS


Hence Proved



Question 19.

If sin 3A = cos(A – 26o), where 3A is an acute angle, find the value of A.


Answer:

sin 3A = cos (A-26°) …(i)

We know that


Sin θ = cos (90° - θ)


So, Eq. (i) become


Cos (90° - 3A) = cos (A -26°)


On Equating both the sides, we get


90° - 3A = A – 26°


⇒ -3A - A = -26° -90°


⇒ -4A = -116°


⇒ A = 29°



Question 20.

Find θ if cos(2 θ +54o)= sin θ, where (2θ +54o) is an acute angle.


Answer:

cos(2 θ +54o)= sin θ …(i)

We know that


Sin θ = cos (90° - θ)


So, Eq. (i) become


cos(2 θ +54o) = cos( 90° - θ)


On Equating both the sides, we get


2θ + 54° = 90° - θ


⇒ 2θ + θ = 90° - 54°


⇒ 3θ = 36°


⇒ θ = 12°



Question 21.

If tan 3 θ =cot (θ +18o), where 3 θ and θ +18o are acute angles, find the value of θ.


Answer:

tan 3θ = cot (θ + 18°) …(i)

We know that


tan θ = cot (90° - θ)


So, Eq. (i) become


Cot (90° - 3θ) = cot (θ + 18°)


On Equating both the sides, we get


90° - 3θ = θ + 18°


⇒ -3θ - θ = 18° -90°


⇒ -4θ = -72°


⇒ θ = 18°



Question 22.

If sec 5 θ =cosec (θ -36o), where 5 θ is an acute angle, find the value of θ.


Answer:

sec 5θ = cosec (θ-36°) …(i)

We know that


sec θ = cosec (90° - θ)


So, Eq. (i) become


Cosec (90° - 5θ) = cosec (θ -36°)


On Equating both the sides, we get


90° - 5θ = θ -36°


⇒ -5θ - θ = -36° -90°


⇒ -6θ = -126°


⇒ θ = 21°



Question 23.

Prove that :

sin 70o. sec 20o=1


Answer:

Taking LHS

sin 70° sec 20°



[∵ cos θ = sin (90° - θ)]



= 1 = RHS


Hence Proved



Question 24.

Prove that :

sin (90o- θ) tan θ=sin θ


Answer:

Taking LHS

Sin(90° - θ) tanθ [∵ cos θ = sin (90° - θ)]


⇒ cos θ tan θ


[∵ tan θ ]


= sin θ = RHS


Hence Proved



Question 25.

Prove that :

tan 63o. tan 27o=1


Answer:

Taking LHS

Tan 63° tan 27°


⇒ tan 63° cot (90° - 27°) [∵ tan θ = cot (90° - θ)]


⇒ tan 63° cot 63°



= 1 =RHS


Hence Proved



Question 26.

Prove that :



Answer:

Taking LHS

=




= cos2 θ – 1


= - sin2 θ [∵ cos2 θ + sin2 θ = 1]


= RHS


Hence Proved



Question 27.

Prove that :

sin 55o. cos 48o=cos35o. sin 42o


Answer:

Taking LHS = sin 55 ° cos 48°

We know that


cos θ = sin (90° - θ)


Here, θ = 48°


⇒ sin 55° sin (90° - 48°)


⇒ sin 55° sin 42°


We also know that


Sin θ = cos (90° - θ)


Here, θ = 55°


⇒ cos (90° - 55°) sin 42°


⇒ cos 35° sin 42° = RHS


Hence Proved



Question 28.

Prove that :

sin2 25o+sin2 65° = cos2 63°+cos2 39o


Answer:

Taking LHS = sin 25o+sin65o

We know that


Sin θ = cos (90° - θ)


Here, θ = 25°


⇒ cos2 (90° - 25°)+ sin2 65°


⇒ cos2 65° + sin2 65°


= 1 [∵ cos2 θ + sin2 θ = 1]


Now, RHS = cos2 63o+cos2 39o


We know that


cos θ = sin (90° - θ)


Here, θ = 39°


⇒ cos2 63° + sin2 (90° - 39°)


⇒ cos2 63°+ sin2 63°


=1 [∵ cos2 θ + sin2 θ = 1]


LHS = RHS


Hence Proved



Question 29.

Prove that :

sin 54o+cos67o= sin23o+cos36o


Answer:

Taking LHS = sin 54o+cos67o

We know that


cos θ = sin (90° - θ)


Here, θ = 67°


⇒ sin 54°+ sin (90° - 67°)


⇒ sin 54°+ sin 23°


We also know that


Sin θ = cos (90° - θ)


Here, θ = 54°


⇒ cos (90° - 54°)+ sin 23°


⇒ cos 36°+ sin 23° = RHS


Hence Proved



Question 30.

Prove that :

cos 27+ sin51o = sin63o+cos 39o


Answer:

Taking LHS = cos 27+ sin51o

We know that


cos θ = sin (90° - θ)


Here, θ = 27°


⇒ sin (90° - 27°)+ sin 51°


⇒ sin 63°+ sin 51°


We also know that


Sin θ = cos (90° - θ)


Here, θ = 51°


⇒ sin 63°+ cos (90° - 51°)


⇒ sin 63°+ cos 39° = RHS


Hence Proved



Question 31.

Prove that :

sin240o+sin250o=1


Answer:

Taking LHS= sin240o+sin250o

⇒ cos2 (90° - 40°) + sin2 50° [∵ Sin θ = cos (90° - θ)]


⇒ cos2 50° + sin2 50°


= 1 =RHS [∵ cos2 θ + sin2 θ = 1]


Hence Proved



Question 32.

Prove that :

sin229o + sin261o=1


Answer:

Taking LHS= sin229o + sin261o

⇒ cos2 (90° - 29°) + sin2 61° [∵ Sin θ = cos (90° - θ)]


⇒ cos2 61° + sin2 61°


= 1 =RHS [∵ cos2 θ + sin2 θ = 1]


Hence Proved



Question 33.

Prove that :

sin θ .cos (90° - θ) + cos θ sin (90° - θ).


Answer:

Taking LHS = sin θ cos (90° - θ) + cos θ sin (90° - θ)

⇒ sin θ × sin θ + cos θ × cos θ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]


⇒ cos2 θ + sin2 θ [∵ cos2 θ + sin2 θ = 1]


= 1 = RHS


Hence Proved



Question 34.

Prove that :

cos θ . cos(90° – θ) + sin θ sin (90° – θ) = 0


Answer:

Taking LHS = cos θ cos ( 90° - θ) + sin θ sin (90° - θ)

⇒ cos θ × sin θ – sinθ × cos θ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]


= 0 = RHS


Hence Proved



Question 35.

Prove that :

sin 42°. cos 48° + cos 42° . sin 48° = 1


Answer:

Taking LHS

= sin 42° cos 48° + cos 42° sin 48°


= cos (90° - 42°) cos 48° + sin (90° - 42°) sin 48°


[∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]


= cos 48° cos 48° + sin 48° sin 48°


= cos2 48° + sin2 48°


= 1 [∵ cos2 θ + sin2 θ = 1]


=LHS=RHS


Hence Proved



Question 36.

Prove that :



Answer:

Taking LHS


[∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]



= 1 + 1


= 2 = RHS


Hence Proved



Question 37.

Prove that :

tan 27° tan 45° tan 63°


Answer:

Taking LHS

= tan 27° tan 45° tan 63°


=tan (90° - 27°) tan 45° tan 63° [∵ tan θ = cot (90° - θ)]


=cot 63° tan 45° tan 63°



= tan 45° [∵ tan 45° =1]


=1 =RHS


Hence Proved



Question 38.

Prove that :

tan 9°. tan 27°. tan 45°. tan 63°. tan 81° = 1


Answer:

Taking LHS

= tan 9° tan 27° tan 45° tan 63° tan 81°


=cot(90° - 9°) tan (90° - 27°) tan 45° tan 63° tan 81° [∵ tan θ = cot (90° - θ)]


=cot 81° cot 63° tan 45° tan 63° tan 81°



= tan 45° [∵ tan 45° =1]


=1 =RHS


Hence Proved



Question 39.

Prove that :

sin 9°. sin 27°. sin 63°. sin 81°

= cos9°.cos27°.cos63°.cos81°


Answer:

Taking LHS

= sin 9° sin 27° sin 63° sin 81°


= cos (90° - 9°) cos (90° - 27°) cos (90° – 63°) cos (90°- 81°)


= cos 81° cos 63° cos 27° cos 9°


Or cos 9° cos 27° cos 63° cos 81° = RHS


Hence Proved



Question 40.

Prove that :



Answer:

Taking LHS

= tan 7° tan 23° tan 60° tan 67° tan 83°


=cot(90° - 7°) tan (90° - 23°) tan 60° tan 67° tan 83° [∵ tan θ = cot (90° - θ)]


=cot 83° cot 67° tan 60° tan 67° tan 83°



= tan 60° [∵ tan 60° =√3]


=√3 =RHS



Question 41.

Prove that :



Answer:

Taking LHS

= tan 15° tan 25° tan 60° tan 65° tan 75°


=cot(90° - 15°) tan (90° - 25°) tan 60° tan 65° tan 75° [∵ tan θ = cot (90° - θ)]


=cot 75° cot 65° tan 60° tan 65° tan 75°



= tan 60° [∵ tan 60° =√3]


=√3 =RHS



Question 42.

Find the value off the following:



Answer:



[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]



= 1 + 1 – 4


= -2



Question 43.

Find the value off the following:



Answer:



[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]


[∵ cos2 θ + sin2 θ = 1]


= 1 + 1


=2



Question 44.

Find the value off the following:



Answer:



[∵ tan θ = cot (90° - θ) , sec θ = cosec (90° - θ) and cos θ = sin (90° - θ)]




= 1 + 1


= 2



Question 45.

Find the value off the following:

cosec (65° + θ) – sec (25° - θ) – tan(55° - θ) + cot(35° +θ)


Answer:

cosec (65° + θ) – sec (25° - θ) – tan(55° - θ) + cot(35° +θ)

= sec {90°-(65°+θ)} – sec (25° - θ) – tan(55° - θ) + tan {90°-(35° +θ)}


[∵ cosec θ = sec (90° - θ) and cot θ = tan (90° - θ)]


= sec ( 90° - 65°-θ) – sec (25° - θ) – tan(55° - θ) + tan (90°- 35° - θ)


= sec (25° - θ) - sec (25° - θ) – tan(55° - θ) + tan (55° - θ)


= 0



Question 46.

Find the value off the following:



Answer:





= 1 + 1 – 1


= 1



Question 47.

Find the value off the following:



Answer:



[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]



= 1



Question 48.

Find the value off the following:

cosec (65° + θ) – sec (25° - θ)


Answer:

cosec (65° + θ) – sec (25° - θ)

= sec {90°-(65°+θ)} – sec (25° - θ)


[∵ cosec θ = sec (90° - θ)]


= sec ( 90° - 65°-θ) – sec (25° - θ)


= sec (25° - θ) - sec (25° - θ)


= 0



Question 49.

Find the value off the following:

cos (60° + θ) – sin (30° - θ)


Answer:

cos (60° + θ) – sin (30° - θ)

= sin {90°-(60°+θ)} – sin (30° - θ) [∵ cos θ = sin (90° - θ)]


= sin ( 90° - 60°-θ) – sin (30° - θ)


= sin (30° - θ) - sin (30° - θ)


= 0



Question 50.

Find the value off the following:

sec 70°. sin 20° - cos 20°. cosec 70°


Answer:

sec 70° sin 20° - cos 20° cosec 70°

= cosec (90°-70°) cos (90° - 20°)- cos 20° cosec 70°


[∵ sec θ = cosec (90° - θ) and Sin θ = cos (90° - θ)]


= cosec 70° cos 20° - cos 20° cosec 70°


=0



Question 51.

Find the value off the following:

(sin 72° + cos 18°)( sin 72° - cos 18°)


Answer:

(sin 72° + cos 18°)( sin 72° - cos 18°)

Using the identity , (a-b)(a+b) = a2 – b2


= (sin 72°)2 - (cos 18°)2


= {cos(90° - 72°)}2 - (cos 18°)2 [∵ Sin θ = cos (90° - θ)]


=(cos 18°)2 - (cos 18°)2


= 0



Question 52.

Find the value off the following:



Answer:


[∵ cos θ = sin (90° - θ)]



= 1 + 1 - 1


= 1



Question 53.

Find the value off the following:



Answer:





= 1 + 1


= 2



Question 54.

Find the value off the following:

(sin 50° + θ)- cos (40° - θ) + tan 1°. tan 10° tan 20°. tan 70°. tan 80°. tan 89°


Answer:

(sin 50° + θ)- cos (40° -θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89°

= cos {90° -(50° + θ)} - cos (40° -θ)+ cot(90° - 1°) tan (90° - 10°) cot(90° - 20°) tan 70° tan 80° tan 89° [∵ Sin θ = cos (90° - θ) & tan θ = cot (90° - θ)]


= cos (40° -θ) - cos (40° -θ) + cot89° cot80° cot70° tan 70° tan 80° tan 89°



= 1



Question 55.

Find the value off the following:



Answer:



[∵ cot θ = tan (90° - θ), cos θ = sin (90° - θ) and Sin θ = cos (90° - θ)]



[∵ 1+tan2 θ =sec2 θ and cos2 θ +sin2θ = 1]



= 1 + 1


= 2



Question 56.

Find the value off the following:



Answer:




[∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ)]


=


= 0 + 1


= 1



Question 57.

Find the value off the following:



Answer:




[∵ cos θ = sin (90° - θ) and tan θ = cot (90° - θ)]




= 1 + 1 [∵ tan 45° = 1]


= 2



Question 58.

Find the value off the following:



Answer:


[∵ cos θ = sin (90° - θ)]



= 1 + 1


= 2



Question 59.

Evaluate the following



Answer:


[∵ cos θ = sin (90° - θ)]



= 3 + 2


= 5



Question 60.

Evaluate the following



Answer:


[∵ tan θ = cot (90° - θ)]



= 1 +1 – 2


= 0



Question 61.

Evaluate the following



Answer:



[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]




= 1 + 1


= 2



Question 62.

Evaluate the following

cos38° cos52° – sin38° sin 52°


Answer:

We know that

cos θ = sin (90° - θ)


=sin (90° - 38°) sin (90° -52°) – sin 38° sin 52°


= sin 52° sin 38°– sin 38° sin 52°


=0



Question 63.

Evaluate the following

sec41° sin49° + cos49° cosec 41°


Answer:

We know that

sec θ = cosec (90° - θ) and cos θ = sin (90° - θ)


Cosec (90° – 41°) sin 49° + sin (90° – 49°) cosec 41°


= cosec 49° sin 49° + sin 41° cosec 41°



= 1+ 1


= 2




Exercise 4.4
Question 1.

Fill in the blanks

(i) sin2 θ cosec2 θ = ……..

(ii) 1 + tan2 θ = ……

(iii) Reciprocal sin θ. cot θ = ……

(iv) 1–.......= cos2θ

(v)

(vi)

(vii) cos θ is reciprocal of .........

(viii) Reciprocal of sin θ is.........

(ix) Value of sin θ in terms of cos θ is

(x) Value of cos θ in terms of sin θ is


Answer:

(i) Given: sin2 θ cosec2 θ



= 1


(ii) Given: 1 + tan2 θ




[∵ cos2 θ + sin2 θ = 1]



= sec2 θ


(iii) Given : sin θ cot θ


Firstly, we simplify the given trigonometry



= cos θ


Now, the reciprocal of cos θ is



=sec θ


(iv) Given: 1 – x = cos2θ


Subtracting 1 to both the sides, we get


1 – x –1 = cos2θ – 1


⇒ –x = – sin2θ


⇒ x =sin2 θ


(v)


(vi)


(vii)


(viii)


(ix) We know that


cos2 θ + sin2 θ = 1


⇒ sin2 θ = 1 – cos2 θ


⇒ sin θ = √(1 – cos2 θ)


(x) We know that


cos2 θ + sin2 θ = 1


⇒ cos 2 θ = 1 – sin2 θ


⇒ cos θ = √(1 – sin2 θ)



Question 2.

If sin θ= p and cos θ = q, what is the relation between p and q ?


Answer:

We know that,

cos2 θ + sin2 θ = 1 …(i)


Given : sin θ = p and cos θ = q


Putting the values of sin θ and cos θ in eq. (i), we get


(q)2 + (p)2 =1


⇒ p2 + q2 =1



Question 3.

If cos A = x, express sin A in terms of x


Answer:

We know that

cos2 θ + sin2 θ = 1


⇒ sin2 θ = 1 – cos2 θ


⇒ sin θ = √(1 – cos2 θ)


And Given that cos θ = x


⇒ sin θ = √(1– x2)



Question 4.

If x cos θ = 1 and y sin θ = 1 find the value of tan θ.


Answer:

Given x cosθ = 1 and y sinθ = 1


Now, we know that



Putting the value of sin θ and cos θ, we get





Question 5.

If cos40o = p, then write the value of sin 40o in terms of p.


Answer:

We know that

cos2 θ + sin2 θ = 1


⇒ cos2 40° + sin2 40° = 1


⇒ sin2 40° = 1 – cos2 40°


⇒ sin 40° = √(1 – cos2 40°)


And Given that cos 40° = p


⇒ sin 40° = √(1– p2)



Question 6.

If sin 77° = x, then write the value of cos 77o in terms of x.


Answer:

We know that

cos2 θ + sin2 θ = 1


⇒ cos2 77° + sin2 77° = 1


⇒ cos 2 77° = 1 – sin2 77°


⇒ cos 77° = √(1 – sin2 77°)


And Given that sin 77° = x


⇒ cos 77° = √(1 – x2 )



Question 7.

If cos55° = x2, then write the value of sin 55o in terms of x.


Answer:

We know that

cos2 θ + sin2 θ = 1


⇒ cos2 55° + sin2 55° = 1


⇒ sin2 55° = 1 – cos2 55°


⇒ sin 55° = √(1 – cos2 55°)


And Given that cos 55° = x2


⇒ sin 55° = √{1– (x2)2}


⇒ sin 55° = √(1 – x4)



Question 8.

If, sin 50° = α then write the value of cos 50° in terms of α.


Answer:

We know that

cos2 θ + sin2 θ = 1


⇒ cos2 50° + sin2 50° = 1


⇒ cos 2 50° = 1 – sin2 50°


⇒ cos 50° = √(1 – sin2 50°)


And Given that sin 50° = a


⇒ cos 50° = √(1 – a2 )



Question 9.

If x cos A = 1 and tan A = y, then what is the value of x2 – y2.


Answer:

Given x cos A = 1 and tan A =y


and


To find: x2 – y2


Putting tha values of x and y , we get





[∵ cos2 θ + sin2 θ = 1]


= 1



Question 10.

Prove the followings identities:

(1 – sin θ)(1 + sin θ) = cso2 θ


Answer:

Taking LHS = (1 – sinθ)(1+ sinθ)

Using identity , (a + b) (a – b) = (a2 – b2) , we get


= (1)2 – (sinθ)2


= 1 – sin2 θ


= cos2 θ [∵ cos2 θ + sin2 θ = 1]


= RHS


Hence Proved



Question 11.

Prove the followings identities:

(1 + cos θ)(1 – cos θ) = sin2θ


Answer:

Taking LHS =(1 – cosθ)(1+ cosθ)

Using identity , (a + b) (a – b) = (a2 – b2) , we get


= (1)2 – (cosθ)2


= 1 – cos2 θ


= sin2 θ [∵ cos2 θ + sin2 θ = 1]


= RHS


Hence Proved



Question 12.

Prove the followings identities:



Answer:

Taking LHS

[Using identity , (a + b) (a – b) = (a2 – b2)]


[∵ cos2 θ + sin2 θ = 1]


= tan2 θ


= RHS


Hence Proved



Question 13.

Prove the followings identities:



Answer:

Taking LHS

Multiplying and divide by the conjugate of sec θ + tan θ



[Using identity , (a + b) (a – b) = (a2 – b2)]


= sec θ – tan θ [∵ 1+ tan2 θ = sec2 θ ]


= RHS


Hence Proved



Question 14.

Prove the following identities :

sinθ. cotθ = cos θ


Answer:

Taking LHS = sin θ cot θ


= cos θ


=RHS


Hence Proved



Question 15.

Prove the following identities :

sin2 θ(1+ cot2 θ) = 1


Answer:

Taking LHS = sin2 θ(1+ cot2 θ)

= sin2 θ (cosec2 θ) [∵ cot2 θ +1= cosec2 θ ]



= 1


=RHS


Hence Proved



Question 16.

Prove the following identities :

cos2 A (tan2 A+1) = 1


Answer:

Taking LHS = cos2 A (tan2 A+1)

= cos2 θ (sec2 θ) [∵ 1+ tan2 θ = sec2 θ ]



= 1


=RHS


Hence Proved



Question 17.

Prove the following identities :

tan4θ + tan2θ = sec4θ – sec2θ


Answer:

Taking LHS = tan4 θ + tan2 θ

= (tan2 θ)2 + tan2 θ


= ( sec2 θ – 1)2 + (sec2 θ – 1) [∵ 1+ tan2 θ = sec2 θ ]


= sec4 θ + 1 – 2 sec2 θ + sec2 θ – 1 [∵ (a – b)2 = (a2 + b2 – 2ab)]


= sec4 θ – sec2 θ


=RHS


Hence Proved



Question 18.

Prove the following identities :



Answer:

Taking LHS

[∵ 1+ tan2 θ = sec2 θ]




= tan θ


=RHS


Hence Proved



Question 19.

Prove the following identities :



Answer:

Taking LHS


[∵ cos2 θ + sin2 θ = 1]



= sec2θ


Now, RHS





= sec2θ


∴ LHS = RHS


Hence Proved



Question 20.

Prove the following identities :



Answer:

Taking LHS


= 3 sec2 θ – 4 tan2 θ


We know that,


1+ tan2 θ = sec2 θ


= 3(1+ tan2 θ) – 4 tan2 θ


= 3 + 3 tan2 θ – 4 tan2 θ


= 3 – tan2 θ


=RHS


Hence Proved



Question 21.

Prove the following identities :

(1+ tan2 θ) cos θ. sin θ = tan θ


Answer:

Taking LHS = (1+ tan2 θ) cos θ sin θ

= (sec2 θ) cos θ sin θ [∵ 1+ tan2 θ = sec2 θ]




= tan θ


=RHS


Hence Proved



Question 22.

Prove the following identities :

sin2θ – cos2 ϕ = sin2ϕ – cos2θ


Answer:

Taking LHS = sin2 θ – cos2 φ

=( 1 – cos2 θ) – (1 – sin2 φ) [∵ cos2 θ + sin2 θ = 1] & [∵ cos2 φ + sin2 φ = 1]


= 1 – cos2 θ – 1 + sin2 φ


= sin2 φ – cos2 θ


=RHS


Hence Proved



Question 23.

Prove the following identities :



Answer:

Taking LHS




= tan2 θ


=RHS


Hence Proved



Question 24.

Prove the following identities :

(1 – cosθ)(1+ cosθ)(1+ cot2 θ) = 1


Answer:

Taking LHS = (1 – cosθ)(1+ cosθ)(1+ cot2 θ)

Using identity , (a + b) (a – b) = (a2 – b2) in first two terms , we get


= (1)2 – (cosθ)2 (cosec2 θ) [∵ cot2 θ +1= cosec2 θ]


= (1 – cos2 θ) (cosec2 θ)


= (sin2 θ) (cosec2 θ) [∵ cos2 θ + sin2 θ = 1]



=1


= RHS


Hence Proved



Question 25.

Prove the following identities :



Answer:

Taking LHS



[∵ (a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)]



[∵ cos2 θ + sin2 θ = 1]



=RHS


Hence Proved



Question 26.

Prove the following identities :



Answer:

Taking LHS

Multiplying and divide by the conjugate of (1 – sinθ), we get






Now, multiply and divide by conjugate of 1 – cos θ, we get






=RHS


Hence Proved



Question 27.

Prove the following identities :

(sin θ – cos θ)2 = 1 – 2 sinθ . cos θ


Answer:

Taking LHS = (sin θ – cos θ)2

Using the identity,(a – b)2 = (a2 + b2 – 2ab)


= sin2 θ + cos2 θ – 2sin θ cos θ


= 1 – 2sin θ cos θ [∵ cos2 θ + sin2 θ = 1]


=RHS


Hence Proved



Question 28.

Prove the following identities :

(sin θ + cos θ)2 + (sin θ – cos θ)2 = 2


Answer:

Taking LHS = (sin θ + cos θ)2 + (sin θ – cos θ)2

Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)


= sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ – 2sin θ cos θ


= 1 +1 [∵ cos2 θ + sin2 θ = 1]


= 2


=RHS


Hence Proved



Question 29.

Prove the following identities :

(asin θ + bcos θ)2 + (acos θ – bsin θ)2 = a2 + b2


Answer:

Taking LHS = (asin θ + bcos θ)2 + (acos θ – bsin θ )2

Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)


= a2 sin2 θ + b2 cos2 θ + 2 ab sin θ cos θ + a2 cos2 θ + b2 sin2 θ – 2 ab sin θ cos θ


= a2 sin2 θ+ a2 cos2 θ + b2 sin2 θ + b2 cos2 θ


= a2 (sin2 θ + cos2 θ) + b2 (sin2 θ + cos2 θ)


= a2 + b2 [∵ cos2 θ + sin2 θ = 1]


=RHS


Hence Proved



Question 30.

Prove the following identities :

cos4 A + sin4 A + 2 sin2 A. cos2 A = 1


Answer:

Taking LHS = cos4 A + sin4 A + 2 sin2 A cos2 A

Using the identity,(a + b)2 = (a2 + b2 + 2ab)


Here, a = cos2 A and b = sin2 A


= ( cos2 A + sin2 A) [∵ cos2 θ + sin2 θ = 1]


= 1



Question 31.

Prove the following identities :

sin4 A – cos4 A = 2 sin2 A – 1 = 1 – 2 cos2 A = sin2 A – cos2 A


Answer:

Given:


Taking I term


= sin4 A – cos4 A → I term


= (sin2 A)2 – (cos2 A)2


= (sin2 A – cos2 A)(sin2 A+ cos2 A )


[∵ (a2 – b2) = (a + b) (a – b)]


= (sin2 A – cos2 A)(1) [∵ cos2 θ + sin2 θ = 1]


= (sin2 A – cos2 A) …(i) → IV term


From Eq. (i)


= {sin2 A – (1 – sin2 A)} [∵ cos2 θ + sin2 θ = 1]


= sin2 A – 1 + sin2 A


= 2 sin2 A – 1 → II term


Again, From Eq. (i)


= {(1 – cos2 A) – cos2 A } [∵ cos2 θ + sin2 θ = 1]


=1 – 2 cos2 A → III term


Hence, I = II = III = IV


Hence Proved



Question 32.

Prove the following identities :

cos4 θ – sin4 θ = cos2 θ – sin2 θ = 2 cos2 θ – 1


Answer:

Given:


Taking I term


= cos4 θ – sin4 θ → I term


= (cos2 θ)2 – (sin2 θ)2


= (cos2 θ – sin2 θ)(cos2 θ+ sin2 θ )


[∵ (a2 – b2) = (a + b) (a – b)]


= (cos2 θ – sin2 θ) (1) [∵ cos2 θ + sin2 θ = 1]


= (cos2 θ – sin2 θ) …(i) → II term


From Eq. (i)


= {cos2 θ – (1 – cos2 θ)} [∵ cos2 θ + sin2 θ = 1]


= 2 cos2 θ – 1 → III term


Hence, I = II = III


Hence Proved



Question 33.

Prove the following identities :

2 cos2 θ – cos4 θ + sin4 θ = 1


Answer:

Taking LHS = 2 cos2 θ – cos4 θ + sin4 θ

= 2 cos2 θ – (cos4 θ – sin4 θ)


= 2 cos2 θ – [(cos2 θ)2 – (sin2 θ)2]


Using identity, (a2 – b2) = (a + b) (a – b)


= 2 cos2 θ – [(cos2 θ – sin2 θ)(cos2 θ+ sin2 θ )]


= 2 cos2 θ – [(cos2 θ – sin2 θ)(1)] [∵ cos2 θ + sin2 θ = 1]


=2 cos2 θ – cos2 θ + sin2 θ


= cos2 θ + sin2 θ


= 1 [∵ cos2 θ + sin2 θ = 1]


= RHS


Hence Proved



Question 34.

Prove the following identities :

1 – 2 cos2 θ + cos4 θ = sin4θ


Answer:

Taking LHS = 1 – 2 cos2 θ + cos4 θ

We know that,


cos2 θ + sin2 θ = 1


= 1– 2 cos2 θ + (cos2 θ)2


= 1 – 2 cos2 θ + (1 – sin2 θ)2


= 1 – 2 cos2 θ +1 + sin4 θ – 2sin2θ


= 2 – 2(cos2 θ + sin2θ) + sin4 θ


= 2 – 2(1) + sin4 θ


= sin4 θ


=RHS


Hence Proved



Question 35.

Prove the following identities :

1 – 2 sin2 θ + sin4 θ = cos4θ


Answer:

Taking LHS = 1 – 2 sin2 θ + sin4 θ

We know that,


cos2 θ + sin2 θ = 1


= 1– 2 sin2 θ + (sin2 θ)2


= 1 – 2 sin2 θ + (1 – cos2 θ)2


= 1 – 2 sin2 θ +1 + cos4 θ – 2cos2θ


= 2 – 2(cos2 θ + sin2θ) + cos4 θ


= 2 – 2(1) + cos4 θ


= cos4 θ


=RHS


Hence Proved



Question 36.

Prove that the following identities :

sec2θ + cosec2θ = sec2θ.cosec2θ


Answer:

Taking LHS = sec2 θ + cosec2 θ


[∵ cos2 θ + sin2 θ = 1]



= sec2 θ × cosec2 θ


=RHS


Hence Proved



Question 37.

Prove that the following identities :



Answer:

Taking LHS


[∵ cos2 θ + sin2 θ = 1]


= cosec θ


=RHS


Hence Proved



Question 38.

Prove that the following identities :

cotθ + tan θ = cosec θ . sec θ


Answer:

Taking LHS = cot θ + tan θ


[∵ cos2 θ + sin2 θ = 1]



= cosec θ sec θ


=RHS


Hence Proved



Question 39.

Prove that the following identities :



Answer:

Taking LHS

Multiplying and divide by the conjugate of 1 + sin θ , we get




[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]



[∵ cos2 θ + sin2 θ = 1]



=RHS


Hence Proved



Question 40.

Prove that the following identities :



Answer:

Taking LHS

Multiplying and divide by the conjugate of 1 + cos θ , we get




[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]



[∵ cos2 θ + sin2 θ = 1]



=RHS


Hence Proved



Question 41.

Prove that the following identities :



Answer:

Taking LHS

Multiplying and divide by the conjugate of 1 + cos θ , we get




[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]



[∵ cos2 θ + sin2 θ = 1]



=RHS


Hence Proved



Question 42.

Prove that the following identities :



Answer:

Taking LHS

Multiplying and divide by the conjugate of 1 + sin θ , we get



[∵ (a + b) (a – b) = (a2 – b2)]



[∵ cos2 θ + sin2 θ = 1]



=RHS


Hence Proved



Question 43.

Prove that the following identities :

(sin8θ – cos8θ) = (sin2θ – cos2θ)(1 – 2sin2θ .cos2θ)


Answer:

Taking LHS

= sin8 θ – cos8 θ


= (sin4 θ)2 – (cos4 θ)2


= (sin4 θ – cos4 θ)(sin4 θ+ cos4 θ )


[∵ (a2 – b2) = (a + b) (a – b)]


= {(sin2 θ)2 – (cos2 θ)2}{(sin2 θ)2 + (cos2 θ)2}


= (sin2 θ + cos2 θ) (sin2 θ – cos2 θ) [(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]


[ ∵ (a2 + b2) = (a +b)2 – 2ab]


= (1)[ sin2 θ –cos2 θ][(1) – 2 sin2 θ cos2 θ]


= (sin2 θ – cos2 θ)(1 – 2 sin2 θ cos2 θ)


=RHS


Hence Proved



Question 44.

Prove that the following identities :

2(sin6 θ – cos6 θ) – 3(sin4 θ + cos4 θ ) + (sin2 θ + cos2 θ)


Answer:

Taking LHS

= 2(sin6 θ – cos6 θ) – 3(sin4 θ+ cos4 θ ) + (sin2 θ + cos2 θ)


= 2[(sin2 θ)3 – (cos2 θ)3 ] – 3[(sin2 θ)2 + (cos2 θ)2 ]+1 [∵ cos2 θ + sin2 θ = 1]


Now, we use these identities, (a3 – b3)= (a + b)3 – 3ab(a+b) and (a2 + b2) = (a +b)2 – 2ab]


= 2[(sin2 θ + cos2 θ)3 – 3sin2θ cos2θ (sin2 θ+ cos2 θ)] –3[(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]+ 1


=2[(1) – 3sin2θ cos2θ (1)] – 3[(1) – 2 sin2 θ cos2 θ] + 1 [∵ cos2 θ + sin2 θ = 1]


=2(1 – 3 sin2 θ cos2 θ )– 3 + 6sin2 θ cos2 θ+ 1


= 2– 6sin2θ cos2θ – 2 + 6sin2 θ cos2 θ


=0


=RHS


Hence Proved



Question 45.

Prove the following identities



Answer:

Taking LHS





Using the identity, (a2 – b2)= (a + b) (a – b)



= sin A +cos A


=RHS


Hence Proved



Question 46.

Prove the following identities



Answer:

Taking LHS



[∵ cos2 θ + sin2 θ = 1]




=RHS


Hence Proved



Question 47.

Prove the following identities



Answer:

Taking LHS


Using the identity, (a2 – b2)= (a + b) (a – b)




[∵ cos2 θ + sin2 θ = 1]


= 2 sec2 θ


=RHS


Hence Proved



Question 48.

Prove the following identities



Answer:

Taking LHS



[∵ cos2 θ + sin2 θ = 1]




=2 sec θ


=RHS


Hence Proved



Question 49.

Prove the following identities



Answer:

Taking LHS




Using the identity, (a2 – b2)= (a + b) (a – b)




[∵ cos2 θ + sin2 θ = 1]



=RHS


Hence Proved



Question 50.

Prove the following identities



Answer:

Taking LHS


Using the identity, (a2 – b2)= (a + b) (a – b)




[∵ cos2 θ + sin2 θ = 1]


=RHS


Hence Proved



Question 51.

Prove the following identities



Answer:

Taking LHS


Using the identity, (a2 – b2)= (a + b) (a – b)




[∵ cos2 θ + sin2 θ = 1]



=RHS


Hence Proved



Question 52.

Prove the following identities

cot2θ – cos2θ = cot2θ . cos2θ


Answer:

Taking LHS = cot2 θ – cos2 θ



[∵ cos2 θ + sin2 θ = 1]



= cot2 θ cos2 θ


=RHS


Hence Proved



Question 53.

Prove the following identities

tan2 φ – sin2 φ – tan2 φ . sin2 φ = 0


Answer:

Taking LHS = tan2 φ – sin2 φ – tan2 φ sin2 φ




[∵ cos2 φ + sin2 φ = 1]



= 0


=RHS


Hence Proved



Question 54.

Prove the following identities

tan2 φ + cot2 φ + 2 = sec2ϕ. cosec2ϕ


Answer:

Taking LHS = tan2 φ + cot2 φ + 2


[∵ (a + b)2 = (a2 + b2 + 2ab)]


[∵ cos2 φ + sin2 φ = 1]



= sec2 φ cosec2 φ


=RHS


Hence Proved



Question 55.

Prove the following identities



Answer:

Taking LHS


[∵ cot2 θ – cosec2 θ = 1]




= cot θ + cosec θ




=RHS


Hence Proved



Question 56.

Prove the following identities



Answer:

Taking LHS


=







[∵ (a3 – b3)= (a – b)(a2 +b2 +ab)]




= tan θ cot θ + 1


=RHS


Hence Proved



Question 57.

Prove the following identities



Answer:

Taking LHS

Multiplying and divide by the conjugate of 1 + cos θ , we get




[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]



[∵ cos2 θ + sin2 θ = 1]




= (cosec θ – cot θ)2


= { – (cot θ – cosec θ)}2


= (cot θ – cosec θ)2


=RHS


Hence Proved



Question 58.

Prove the following identities



Answer:

Taking LHS

[multiplying and divide by conjugate of 1– cosθ]




[∵ cos2 θ + sin2 θ = 1]


=


=RHS


Hence Proved



Question 59.

Prove the following identities



Answer:

Taking LHS

[multiplying and divide by conjugate of 1– cosθ]




[∵ cos2 θ + sin2 θ = 1]



Multiply and divide by conjugate of 1+ cosθ, we get






=RHS


Hence Proved



Question 60.

Prove the following identities



Answer:

Taking LHS

[multiplying and divide by conjugate of 1+sinθ]




[∵ cos2 θ + sin2 θ = 1]


=



= sec θ – tan θ


=RHS


Hence Proved



Question 61.

Prove the following identities



Answer:

Taking LHS

[multiplying and divide by of 1+ sin θ]




[∵ cos2 θ + sin2 θ = 1]



=RHS


Hence Proved



Question 62.

Prove the following identities



Answer:

Taking LHS

[multiplying and divide by conjugate of 1– sinθ in 1st term and 1+sinθ in 2nd term]





[∵ cos2 θ + sin2 θ = 1]


=




= 2 sec θ


=RHS


Hence Proved



Question 63.

If secθ + tanθ=m and sec θ – tanθ = n, then prove that


Answer:

Given : sec+tan=m and sec –tan=n

To Prove : √mn = 1


Taking LHS = √mn


Putting the value of m and n, we get



Using the identity, (a + b) (a – b) = (a2 – b2)



=√(1) [∵ 1+ tan2 θ = sec2 θ]


=±1


=RHS


Hence Proved



Question 64.

If cosθ + sinθ = 1, then prove that cosθ – sin θ = ± 1.


Answer:

Given: cos +sin=1

On squaring both the sides, we get


(cos θ +sin θ)2 =(1)2


⇒ cos2 θ + sin2 θ + 2sinθ cos θ = 1


⇒ cos2 θ + sin2 θ = cos2 θ + sin2 θ – 2sinθ cos θ


[∵ cos2 θ + sin2 θ = 1]


⇒ cos2 θ + sin2 θ = (cosθ – sinθ)2


[∵ (a – b)2 = (a2 + b2 – 2ab)]


⇒ 1 = (cos θ – sin θ)2


⇒ (cos θ – sin θ) = ±1


Hence Proved



Question 65.

If sinθ + sin2θ = 1, then prove that cos2θ +1 cos4θ = 1


Answer:

Given : sin θ + sin2 θ = 1

⇒ sin θ = 1 – sin2 θ


Taking LHS = cos2+ cos4


= cos2 θ + (cos2 θ)2


= (1– sin2 θ) + (1– sin2 θ)2 …(i)


Putting sin θ = 1 – sin2 θ in Eq. (i), we get


= sin θ + (sin θ)2


= sin θ + sin2 θ


= 1 [Given: sin θ + sin2 θ = 1]


=RHS


Hence Proved



Question 66.

If tanθ + secθ = x, show that sinθ =


Answer:

To show :


Taking RHS


Given tan+sec=x




[∵ 1+ tan2 θ = sec2 θ]






=sin θ


=LHS


Hence Proved



Question 67.

If sinθ + cosθ = p and secθ + cosecθ = q, then show q(p2–1) =2p


Answer:

Given: sin θ + cos θ = p and sec θ + cosec θ = q

To show q(p2 – 1) = 2p


Taking LHS = q(p2 – 1)


Putting the value of sin θ + cos θ = p and sec θ + cosec θ = q, we get


=(sec θ + cosec θ){( sin θ + cos θ )2 – 1)


=(sec θ + cosec θ){(sin2 θ + cos2 θ + 2sin θ cosθ) – 1)}


[∵ (a + b)2 = (a2 + b2 + 2ab)]


=(sec θ + cosec θ)(1+2sin θ cos θ – 1)


=(sec θ + cosec θ)(2sin θcosθ)




= 2(sin θ +cos θ)


= 2p [ given sin θ + cos θ = p]


=RHS


Hence Proved



Question 68.

If x cosθ =a and y = a tanθ, then prove that x2–y2=a2


Answer:

Given: x cosθ = a and y = a tanθ


To Prove : x2–y2=a2


Taking LHS = x2–y2


Putting the values of x and y, we get







[∵ cos2 θ + sin2 θ = 1]


= a2


= RHS


Hence Proved



Question 69.

If x= r cos α sin β, y = r sin α sin β and z = r cos α then prove that x2 + y2 + z2 = r2.


Answer:

Taking LHS = x2 + y2 + z2

Putting the values of x, y and z , we get


=(r cos α sin β)2 + (r sin α sin β)2 + (r cos α)2


= r2 cos2α sin2β + r2 sin2α sin2β + r2 cos2α


Taking common r2 sin2 α , we get


= r2 sin2α (cos2β + sin2 β) + r2cos2 α


= r2 sin2α + r2 cos2 α [∵ cos2 β + sin2 β = 1]


=r2 ( sin2 α + cos2 α)


= r2 [∵ cos2 α + sin2 α = 1]


=RHS


Hence Proved



Question 70.

If secθ – tanθ = x, then prove that

(i)

(ii)


Answer:

(i) Given sec θ – tan θ = x

Taking RHS


Putting the value of x, we get




[∵ 1+ tan2 θ = sec2 θ]




= cos θ


=RHS


Hence Proved


(ii) Given sec θ – tan θ = x


Taking RHS


Putting the value of x, we get




[∵ 1+ tan2 θ = sec2 θ]




= sin θ


=RHS


Hence Proved



Question 71.

If a cos θ + b sinθ = c, then prove that a sinθ – b cos θ = ±


Answer:

Let

(a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = a2cos2θ + b2 sin2θ + 2ab cos θ sin θ + a2sin2θ


+ b2 cos2θ – 2ab cos θ sin θ


⇒ c2 + (a sin θ – b cos θ)2 = a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)


⇒ c2 + (a sin θ – b cos θ)2 = a2 + b2


⇒ (a sin θ – b cos θ)2 = a2 + b2 – c2


⇒ (a sin θ – b cos θ) = ±√ (a2 + b2 – c2)



Question 72.

If 1+sin2θ = 3 sinθ . cosθ, then prove that tan θ = 1 or 1/2.


Answer:

Given: 1+sin2θ =3 sin θ cos θ

Divide by cos2 θ to both the sides, we get



⇒ sec2 θ + tan2 θ = 3 tan θ


⇒ 1+ tan2 θ+ tan2 θ = 3tan θ


⇒ 2 tan2 θ –3tan θ +1 = 0


Let tanθ = x


⇒ 2x2 – 3x +1 = 0


⇒ 2x2 – 2x – x +1 = 0


⇒ 2x ( x – 1) – 1(x – 1) = 0


⇒ (2x – 1)(x – 1) = 0


Putting each of the factor = 0, we get


⇒ x = 1 or


And above, we let tan θ = x



Hence Proved



Question 73.

If a cos θ – b sinθ = x and a sinθ + b cosθ = y that a2 + b2 = x2 + y2.


Answer:

Taking RHS =x2 + y2

Putting the values of x and y, we get


(a cos θ – b sin θ)2 + (a sin θ + b cos θ)2


= a2cos2θ + b2 sin2θ – 2ab cos θ sin θ + a2sin2θ + b2 cos2θ + 2ab cos θ sin θ


= a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)


= a2 + b2 [∵ cos2 θ + sin2 θ = 1]


=RHS


Hence Proved



Question 74.

If x = a sec θ + b tan θ a and y = a tan θ + b sec θ, then prove that x2 – y2 = a2 – b2.


Answer:

Taking LHS =x2 – y2

Putting the values of x and y, we get


(a sec θ + b tan θ)2 – (a tan θ + b sec θ)2


= a2 sec2θ + b2 tan2θ + 2ab sec θ tan θ – a2tan2θ – b2 sec2θ – 2ab sec θ tan θ


= a2 (sec2θ – tan2θ) – b2 (sec2θ – tan2θ)


= a2 – b2 [∵ 1+ tan2 θ = sec2 θ]


=RHS


Hence Proved



Question 75.

If (a2 – b2) sin θ + 2ab cosθ = a2 + b2, then prove that .


Answer:

Taking (a2 – b2) sin θ + 2ab cos θ = a2 + b2

We know that


Then, substituting the above values in the given equation, we get



Now, substituting, , we hwve



⇒ ( a2 – b2)2t – 2ab(1 – t2) = (a2 + b2)(1+t2)


Simplify, we get


(a2 + 2ab + b2)t2 – 2(a2 – b2)t + (a2 –2ab +b2)=0


⇒ (a+b)2 t2 – 2(a2 – b2)t + (a – b)2 = 0


⇒ (a+b)2 t2 –2 (a – b)(a+b)t + (a – b)2 =0


⇒ [(a+b)t – (a – b)]2 = 0 [∵ (a – b)2 = (a2 + b2 – 2ab)]


⇒ [(a+b)t – (a – b)] = 0


⇒ (a+b)t = (a – b)




We know that,





Hence Proved