From the given figure, find the value of the following:
(i) sin C
(ii) sin A
(iii) cos C
(iv) cos A
(v) tan C
(vi) tan A
(i) Sin C
We know that,
So, here θ = C
Side opposite to ∠C = AB = 3
Hypotenuse = AC = 5
So,
(ii) Sin A
So, here θ = A
The side opposite to ∠A = BC = 4
Hypotenuse = AC = 5
So,
(iii) Cos C
We know that,
So, here θ = C
Side adjacent to ∠C = BC = 4
Hypotenuse = AC = 5
So,
(iv) Cos A
Here, θ = A
Side adjacent to ∠A = AB = 3
Hypotenuse = AC = 5
So,
(v) tan C
We know that,
So, here θ = C
Side opposite to ∠C = AB = 3
Side adjacent to ∠C = BC = 4
So,
(vi) tan A
here θ = A
Side opposite to ∠A = BC = 4
Side adjacent to ∠A = AB = 3
So,
From the given figure, find the value of :
(i) tan θ
(ii) cos θ
(i) tan θ
We know that,
Side opposite to θ = AB = 4
Side adjacent to θ = BC = 3
So,
(ii) cos θ
We know that,
Side adjacent to θ = BC = 3
Hypotenuse = AC = 5
So,
From the given figure, find the value of
(i) sin θ
(ii) tan θ
(iii) tan A – cot C
(i) sin θ
We know that,
Side opposite to θ = BC = ?
Hypotenuse = AC = 13
Firstly we have to find the value of BC.
So, we can find the value of BC with the help of Pythagoras theorem.
According to Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Perpendicular)2
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (12)2 + (BC)2 = (13)2
⇒ 144 + (BC)2 = 169
⇒ (BC)2 = 169–144
⇒ (BC)2 = 25
⇒ BC =√25
⇒ BC =±5
But side BC can’t be negative. So, BC = 5
Now, BC = 5 and AC = 13
So,
(ii) tan θ
We know that,
Side opposite to θ = BC = 5
Side adjacent to θ = AB = 12
So,
(iii) tan A – cot C
We know that,
and
tan A
Here, θ = A
Side opposite to ∠A = BC = 5
Side adjacent to ∠A = AB = 12
So,
Cot C
Here, θ = C
Side adjacent to ∠C = BC = 5
Side opposite to ∠C = AB = 12
So,
So,
In ∆ABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine
a. sin A, cos A
b. sin C, cos C
(i)
(a) sin A
We know that,
So, here θ = A
Side opposite to ∠A = BC = 7
Hypotenuse = AC = ?
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem.
According to Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Perpendicular)2
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (24)2 + (7)2 = (AC)2
⇒ 576 + 49 = (AC)2
⇒ (AC)2 = 625
⇒ AC =√625
⇒ AC =±25
But side AC can’t be negative. So, AC = 25cm
Now, BC = 7 and AC = 25
So,
Cos A
We know that,
So, here θ = A
Side adjacent to ∠A = AB = 24
Hypotenuse = AC = 25
So,
(b) sin C
We know that,
So, here θ = C
The side opposite to ∠C = AB = 24
Hypotenuse = AC = 25
So,
Cos C
We know that,
So, here θ = C
Side adjacent to ∠C = BC = 7
Hypotenuse = AC = 25
So,
Consider ∆ACB, right angled at C, in which AB = 29 units, BC = 21 units and ∠ABC=θ. Determine the values of
a. cos2 θ+ sin2 θ
b. cos2 θ – sin2 θ
(a) Cos2θ +sin2 θ
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem.
According to Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Perpendicular)2
⇒ (AC)2 + (BC)2 = (AB)2
⇒ (AC)2 + (21)2 = (29)2
⇒ (AC)2 = (29)2 – (21)2
Using the identity a2 –b2 = (a+b) (a – b)
⇒ (AC)2 = (29–21)(29+21)
⇒ (AC)2 = (8)(50)
⇒ (AC)2 = 400
⇒ AC =√400
⇒ AC =±20
But side AC can’t be negative. So, AC = 20units
Now, we will find the sin θ and cos θ
In ∆ACB, Side opposite to angle θ = AC = 20
and Hypotenuse = AB = 29
So,
Now, We know that
In ∆ACB, Side adjacent to angle θ = BC = 21
and Hypotenuse = AB = 29
So,
So
=1
Cos2θ +sin2 θ = 1
(b) Cos2θ – sin2 θ
Putting values, we get
In ∆ABC, ∠A is a right angle, then find the values of sin B, cos C and tan B in each of the following :
a. AB = 12, AC = 5, BC = 13
b. AB = 20, AC = 21, BC = 29
c. BC = √2, AB = AC = 1
Given that ∠A is a right angle.
(a) AB = 12, AC = 5, BC = 13
To Find : sin B, cos C and tan B
We know that,
Here, θ = B
Side opposite to angle B = AC = 5
Hypotenuse = BC =13
So,
Now, Cos C
We know that,
Here, θ = C
Side adjacent to angle C = AC = 5
Hypotenuse = BC =13
So,
Now, tan B
We know that,
Here, θ = B
The side opposite to angle B = AC = 5
The side adjacent to angle B = AB = 12
So,
(b) AB = 20, AC = 21, BC = 29
To Find: sin B, cos C and tan B
We know that,
Here, θ = B
The side opposite to angle B = AC =21
Hypotenuse = BC =29
So,
Now, Cos C
We know that,
Here, θ = C
Side adjacent to angle C = AC = 21
Hypotenuse = BC = 29
So,
Now, tan B
We know that,
Here, θ = B
The side opposite to angle B = AC = 21
The side adjacent to angle B = AB = 20
So,
(c) BC =√2, AB = AC = 1
To Find: sin B, cos C and tan B
We know that,
Here, θ = B
The side opposite to angle B = AC =1
Hypotenuse = BC =√2
So
Now, Cos C
We know that,
Here, θ = C
Side adjacent to angle C = AC = 1
Hypotenuse = BC = √2
So,
Now, tan B
We know that,
Here, θ = B
The side opposite to angle B = AC = 1
The side adjacent to angle B = AB = 1
So,
Find the value of the following : (a) sin θ (b) cos θ (c) tan θ from the figures given below :
Firstly, we give the name to the midpoint of BC i.e. M
BC = BM + MC = 2BM or 2MC
⇒ BM = 5 and MC = 5
Now, we have to find the value of AM, and we can find out with the help of Pythagoras theorem.
So, In ∆AMB
⇒ (AM)2 + (BM)2 = (AB)2
⇒ (AM)2 + (5)2 = (13)2
⇒ (AM)2 = (13)2 – (5)2
Using the identity a2 –b2 = (a+b) (a – b)
⇒ (AM)2 = (13–5)(13+5)
⇒ (AM)2 = (8)(18)
⇒ (AM)2 = 144
⇒ AM =√144
⇒ AM =±12
But side AM can’t be negative. So, AM = 12
a. sin θ
We know that,
In ∆AMB
Side opposite to θ = AM = 12
Hypotenuse = AB=13
So,
So,
b. cos θ
We know that,
In ∆AMB
The side adjacent to θ = BM = 5
Hypotenuse = AB = 13
So,
So,
c. tan θ
We know that,
In ∆AMB
Side opposite to θ = AM = 12
The side adjacent to θ = BM = 5
So,
So,
Find the value of the following : (a) sin θ (b) cos θ (c) tan θ from the figures given below :
Firstly, we have to find the value of XM and we can find out with the help of Pythagoras theorem
So, In ∆XMZ
⇒ (XM)2 + (MZ)2 = (XZ)2
⇒ (XM)2 + (16)2 = (20)2
⇒ (XM)2 = (20)2 – (16)2
Using the identity a2 –b2 = (a+b) (a – b)
⇒ (XM)2 = (20–16)(20+16)
⇒ (XM)2 = (4)(36)
⇒ (XM)2 = 144
⇒ XM =√144
⇒ XM =±12
But side XM can’t be negative. So, XM = 12
Now, In ∆XMY we have the value of XM and MY but we don’t have the value of XY.
So, again we apply the Pythagoras theorem in ∆XMY
⇒ (XM)2 + (MY)2 = (XY)2
⇒ (12)2 + (5)2 = (XY)2
⇒ 144 + 25 = (XY)2
⇒ (XY)2 = 169
⇒ XY =√169
⇒ XY =±13
But side XY can’t be negative. So, XY = 13
a. sin θ
We know that,
In ∆XMY
Side opposite to θ = MY = 5
Hypotenuse = XY = 13
So,
b. cos θ
We know that,
In ∆XMY
Side adjacent to θ = XM = 12
Hypotenuse = XY = 13
So
c. tan θ
We know that,
In ∆XMY
The side opposite to θ = MY = 5
Side adjacent to θ = XM = 12
So,
In ∆PQR, ∠Q is a right angle PQ = 3, QR = 4. If ∠P=α and ∠R=β, then find the values of
(i) sin α (ii) cos α
(iii) tan α (iv) sin β
(v) cos β (vi) tan β
Given : PQ = 3, QR = 4
⇒ (PQ)2 + (QR)2 = (PR)2
⇒ (3)2 + (4)2 = (PR)2
⇒ 9 + 16 = (PR)2
⇒ (PR)2 = 25
⇒ PR =√25
⇒ PR =±5
But side PR can’t be negative. So, PR = 5
(i) sin α
We know that,
Here, θ = α
The side opposite to angle α = QR =4
Hypotenuse = PR =5
So,
(ii) cos α
We know that,
Here, θ = α
The side adjacent to angle α = PQ =3
Hypotenuse = PR =5
So,
(iii) tan α
We know that,
Here, θ = α
Side opposite to angle α = QR =4
Side adjacent to angle α = PQ =3
So,
(iv) sin β
We know that,
Here, θ = β
The side opposite to angle β = PQ =3
Hypotenuse = PR =5
So,
(v) cos β
We know that,
Here, θ = β
Side adjacent to angle β = QR =4
Hypotenuse = PR =5
So,
(vi) tan β
We know that,
Here, θ = β
Side opposite to angle β = PQ =3
Side adjacent to angle β = QR =4
So,
If then find the values of cos θ and tan θ.
Given:
We know that,
Or
Let,
Perpendicular =AB =4k
and Hypotenuse =AC =5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
In right angled ∆ ABC, we have
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (4k)2 + (BC)2 = (5k)2
⇒ 16k2 + (BC)2 = 25k2
⇒ (BC)2 = 25 k2 –16 k2
⇒ (BC)2 = 9 k2
⇒ BC =√9 k2
⇒ BC =±3k
But side BC can’t be negative. So, BC = 3k
Now, we have to find the value of cos θ and tan θ
We know that,
The side adjacent to angle θ or base = BC =3k
Hypotenuse = AC =5k
So,
Now,
We know that,
Perpendicular = AB =4k
Base = BC =3k
So,
If calculate cos A and tan A.
Given: Sin A
We know that,
Or
Let,
Side opposite to angle θ = BC =3k
and Hypotenuse = AC =4k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (AB)2 + (3k)2 = (4k)2
⇒ (AB)2 + 9k2 = 16k2
⇒ (AB)2 = 16 k2 – 9 k2
⇒ (AB)2 = 7 k2
⇒ AB =k√7
So, AB = k√7
Now, we have to find the value of cos A and tan A
We know that,
Here, θ = A
The side adjacent to angle A = AB =k√7
Hypotenuse = AC =4k
So,
Now,
We know that,
The side opposite to angle A = BC =3k
The side adjacent to angle A = AB =k√7
So,
If then find the values cos θ and tan θ.
Given:
We know that,
Or
Let,
Perpendicular =AB =3k
and Hypotenuse =AC =5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (3k)2 + (BC)2 = (5k)2
⇒ 9k2 + (BC)2 = 25k2
⇒ (BC)2 = 25 k2 – 9 k2
⇒ (BC)2 = 16 k2
⇒ BC =√16 k2
⇒ BC =±4k
But side BC can’t be negative. So, BC = 4k
Now, we have to find the value of cos θ and tan θ
We know that,
The side adjacent to angle θ = BC =4k
Hypotenuse = AC =5k
So,
Now, tan θ
We know that,
Perpendicular = AB =3k
Base = BC =4k
So,
If then find the value of tan θ.
We know that,
Or
Let,
Base =BC = 4k
Hypotenuse =AC = 5k
Where, k ia any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (AB)2 + (4k)2 = (5k)2
⇒ (AB)2 + 16k2 = 25k2
⇒ (AB)2 = 25 k2 –16 k2
⇒ (AB)2 = 9 k2
⇒ AB =√9 k2
⇒ AB =±3k
But side AB can’t be negative. So, AB = 3k
Now, we have to find tan θ
We know that,
Side opposite to angle θ = BC =4k
Side adjacent to angle θ = AB =3k
So
If then find the values of cos θ and sin θ.
We know that,
Or
Let,
The side opposite to angle θ =AB = 3k
The side adjacent to angle θ =BC = 4k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (3k)2 + (4k)2 = (AC)2
⇒ (AC)2 = 9 k2+16 k2
⇒ (AC)2 = 25 k2
⇒ AC =√25 k2
⇒ AC =±5k
But side AC can’t be negative. So, AC = 5k
Now, we will find the sin θ and cos θ
Side opposite to angle θ = AB = 3k
and Hypotenuse = AC = 5k
So,
Now, We know that
Side adjacent to angle θ = BC = 4k
and Hypotenuse = AC = 5k
So,
If tan A= 4/3. Find the other trigonometric ratios of the angle A.
We know that,
Or
Here, θ = A
Let,
The side opposite to angle A =BC = 4k
The side adjacent to angle A =AB = 3k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (3k)2 + (4k)2 = (AC)2
⇒ (AC)2 = 9 k2 +16 k2
⇒ (AC)2 = 25 k2
⇒ AC =√25 k2
⇒ AC =±5k
But side AC can’t be negative. So, AC = 5k
Now, we will find the sin A and cos A
Side opposite to angle A = BC = 4k
and Hypotenuse = AC = 5k
So,
Now, We know that
Side adjacent to angle A = AB = 3k
and Hypotenuse = AC = 5k
So,
Now, we find other trigonometric ratios
If cot , then find the value of sin θ.
We know that,
Or
Let,
Side adjacent to angle θ =AB = 12k
The side opposite to angle θ =BC = 5k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (12k)2 + (5k)2 = (AC)2
⇒ (AC)2 = 144 k2 +25 k2
⇒ (AC)2 = 169 k2
⇒ AC =√169 k2
⇒ AC =±13k
But side AC can’t be negative. So, AC = 13k
Now, we will find the sin θ
Side opposite to angle θ = BC = 5k
and Hypotenuse = AC = 13k
So,
If tan , then find the value of cos θ.
We know that,
Or
Let,
The side opposite to angle θ =BC = 5k
The side adjacent to angle θ =AB = 12k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (12k)2 + (5k)2 = (AC)2
⇒ (AC)2 = 144 k2 +25 k2
⇒ (AC)2 = 169 k2
⇒ AC =√169 k2
⇒ AC =±13k
But side AC can’t be negative. So, AC = 13k
Now, We know that
Side adjacent to angle θ = AB = 12k
and Hypotenuse = AC = 13k
So,
If sin , then find the value of cos θ and tan θ.
Given: Sin θ
We know that,
Or
Let,
Side opposite to angle θ = 12k
and Hypotenuse = 13k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (12k)2 + (BCk)2 = (13)2
⇒ 144 k2 + (BC)2 = 169 k2
⇒ (BC)2 = 169 k2 –144 k2
⇒ (BC)2 = 25 k2
⇒ BC =√25 k2
⇒ BC =±5k
But side BC can’t be negative. So, BC = 5k
Now, we have to find the value of cos θ and tan θ
We know that,
Side adjacent to angle θ = BC =5k
Hypotenuse = AC =13k
So,
Now, tan θ
We know that,
side opposite to angle θ = AB =12k
Side adjacent to angle θ = BC =5k
So,
If tan θ =0.75, then find the value of sin θ.
We know that,
Or
Given: tan θ =0.75
Let,
The side opposite to angle θ =BC = 3k
The side adjacent to angle θ =AB = 4k
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (4k)2 + (3k)2 = (AC)2
⇒ (AC)2 = 16 k2 +9 k2
⇒ (AC)2 = 25 k2
⇒ AC =√25 k2
⇒ AC =±5k
But side AC can’t be negative. So, AC = 5k
Now, we will find the sin θ
Side opposite to angle θ = BC = 3k
and Hypotenuse = AC = 5k
So,
If tan B= √3, then find the values of sin B and cos B.
We know that,
Or
Given: tan B = √3
Let,
Side opposite to angle B =AC = √3k
The side adjacent to angle B =AB = 1k
where k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (AC)2 = (BC)2
⇒ (1k)2 + (√3k)2 = (BC)2
⇒ (BC)2 = 1 k2 +3 k2
⇒ (BC)2 = 4 k2
⇒ BC =√2 k2
⇒ BC =±2k
But side BC can’t be negative. So, BC = 2k
Now, we will find the sin B and cos B
Side opposite to angle B = AC = k√3
and Hypotenuse = BC = 2k
So,
Now, we know that,
The side adjacent to angle B = AB =1k
Hypotenuse = BC =2k
So,
If , then find the values of cos θ and sin θ.
We know that,
Or
Here,
So, Side opposite to angle θ =AC = m
The side adjacent to angle θ =AB = n
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (AC)2 = (BC)2
⇒ (n)2 + (m)2 = (BC)2
⇒ (BC)2 = m2 + n2
⇒ BC =√ m2 + n2
So, BC =√(m2 + n2)
Now, we will find the sin B and cos B
Side opposite to angle θ = AC = m
and Hypotenuse = BC =√(m2 + n2)
So,
Now, we know that,
Side adjacent to angle θ = AB =n
Hypotenuse = BC =√(m2 + n2)
So,
If sin θ = √3 cos θ, then find the values of cos θ and sin θ.
Given : sin θ =√3cos θ
⇒ tan θ =√3
We know that,
Or
and tan θ = √3
Let,
The side opposite to angle θ =AC = k√3
The side adjacent to angle θ =AB = 1k
where k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (AC)2 = (BC)2
⇒ (1k)2 + (k√3)2 = (BC)2
⇒ (BC)2 = 1 k2 +3 k2
⇒ (BC)2 = 4 k2
⇒ BC =√2 k2
⇒ BC =±2k
But side BC can’t be negative. So, BC = 2k
Now, we will find the sin θ and cos θ
Side opposite to angle θ = AC = k√3
and Hypotenuse = BC = 2k
So,
Now, we know that,
The side adjacent to angle θ = AB =1k
Hypotenuse = BC =2k
So,
If , then find the values of cos θ and sin θ.
We know that,
Or
Let,
Side adjacent to angle θ =AB = 21k
The side opposite to angle θ =BC = 20k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (21k)2 + (20k)2 = (AC)2
⇒ (AC)2 = 441 k2 +400 k2
⇒ (AC)2 = 841 k2
⇒ AC =√841 k2
⇒ AC =±29k
But side AC can’t be negative. So, AC = 29k
Now, we will find the sin θ
Side opposite to angle θ = BC = 20k
and Hypotenuse = AC = 29k
So,
Now, we know that,
Side adjacent to angle θ = AB =21k
Hypotenuse = AC =29k
So,
If 15 cot A=18, find sin A and sec A.
Given: 15 cot A = 8
And we know that,
Or
Let,
Side adjacent to angle A =AB = 8k
The side opposite to angle A =BC = 15k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (8k)2 + (15k)2 = (AC)2
⇒ (AC)2 = 64 k2 +225 k2
⇒ (AC)2 = 289 k2
⇒ AC =√289 k2
⇒ AC =±17k
But side AC can’t be negative. So, AC = 17k
Now, we will find the sin θ
Side opposite to angle θ = BC = 15k
and Hypotenuse = AC = 17k
So,
Now, we know that,
The side adjacent to angle θ = AB =8
Hypotenuse = AC =17
So,
If sin θ = cos θ and 0° < θ <90°, then find the values of sin θ and cos θ.
Given: sinθ = cosθ
⇒ tan θ = 1
Let,
Side opposite to angle θ = AB =1k
The side adjacent to angle θ = BC =1k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (1k)2 + (1k)2 = (AC)2
⇒ (AC)2 = 1k2 +1k2
⇒ (AC)2 = 2k2
⇒ AC =√2k2
⇒ AC =k√2
So, AC = k√2
Now, we will find the sin θ
Side opposite to angle θ = AB= 1k
and Hypotenuse = AC = k√2
So,
Now, we know that,
The side adjacent to angle θ = BC =1k
Hypotenuse = AC =k√2
So,
If , then find the values of cos θ and .
We know that,
Or,
Let,
Side opposite to angle θ = AB = x2 – y2
and Hypotenuse = AC = x2 + y2
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
⇒ (x2 – y2 )2 + (BC)2 = (x2 + y2 )2
⇒ (BC)2 = (x2 + y2 )2 – (x2 – y2 )2
Using the identity, a2 – b2 = (a+b)(a – b)
⇒ (BC)2 = [(x2 + y2 + x2 – y2 )][ x2 + y2 –( x2 – y2)]
⇒ (BC)2 = (2x2)(2y2)
⇒ (BC)2 = (4x2y2)
⇒ BC =√4x2y2
⇒ BC = ±2xy
⇒ BC = 2xy [taking positive square root since, side cannot be negative]
and
So,
If, then find the values of sin θ and cos θ.
Given:
We know that,
Let,
AB = √(m2 – n2) and BC = n
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
⇒ (√(m2 – n2))2 + (n)2 = (AC )2
⇒ m2 – n2 + n2 = (AC )2
⇒ (AC)2 = (m2)
⇒ AC =√ m2
⇒ AC = ±m
⇒ AC = m [taking positive square root since, side cannot be negative]
Now, we have to find the value of cos θ and sin θ
We, know that
and
If sec θ = 2, then find the values of other t–ratios of angle θ.
Given: sec θ = 2
We know that,
Let,
BC = 1k and AC = 2k
where, k is any positive integer.
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
⇒ (AB)2 + (1k)2 = (2k )2
⇒ (AB)2 + k2 = 4k2
⇒ (AB)2 = 4k2 – k2
⇒ (AB)2 = 3k2
⇒ AB = k√3
Now, we have to find the value of other trigonometric ratios.
We, know that
Given:
We know that,
Let,
BC = 12k and AC = 13k
where, k is any positive integer.
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
⇒ (AB)2 + (12k)2 = (13k )2
⇒ (AB)2 + 144k2 = 169k2
⇒ (AB)2 = 169k2 – 144k2
⇒ (AB)2 = 25k2
⇒ AB = √25k2
⇒ AB =±5k [taking positive square root since, side cannot be negative]
Now, we have to find the value of other trigonometric ratios.
We, know that
If , then find the values of other t–ratios of angle θ.
Given: cosec θ = √10
We know that,
Let,
AB = 1k and AC = k√10
where, k is any positive integer.
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
⇒ (1k )2+ (BC)2 = (k√10)2
⇒ (BC)2 = 10k2 – k2
⇒ (BC)2 = 9k2
⇒ BC = √9k2
⇒ BC =±3k [taking positive square root since, side cannot be negative]
Now, we have to find the value of other trigonometric ratios.
We, know that
If then find the values of sin A + cos A.
We know that,
Or
Given:
Let,
Side opposite to angle A =BC = k√3
Side adjacent to angle A =AB = 2k
where, k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (2k)2 + (√3k)2 = (AC)2
⇒ (AC)2 = 4 k2 +3 k2
⇒ (AC)2 = 7 k2
⇒ AC =√7 k2
⇒ AC =k√7
So, AC = k√7
Now, we will find the sin A and cos A
Side opposite to angle A = BC = k√3
and Hypotenuse = AC = k√7
So,
Now, we know that,
Side adjacent to angle A = AB =2k
Hypotenuse = AC = k√7
So,
Now, we have to find sin A +cos A
Putting values of sin A and cos A, we get
If find the value of cos θ – sin θ.
Given: sin θ =√3cos θ
⇒ tan θ = √3
We know that,
Or
Given: tan θ = √3
Let,
Side opposite to angle θ =AC = √3k
Side adjacent to angle θ =AB = 1k
where k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (AC)2 = (BC)2
⇒ (1k)2 + (√3k)2 = (BC)2
⇒ (BC)2 = 1 k2 +3 k2
⇒ (BC)2 = 4 k2
⇒ BC =√2 k2
⇒ BC =±2k
But side BC can’t be negative. So, BC = 2k
Now, we will find the sin B and cos B
Side opposite to angle θ = AC = k√3
and Hypotenuse = BC = 2k
So,
Now, we know that,
The side adjacent to angle θ = AB =1k
Hypotenuse = BC =2k
So,
Now, we have to find the value of cos θ – sin θ
Putting the values of sin θ and cos θ, we get
If , find the value of 1+ cos2 θ.
We know that,
Or
Let,
Side opposite to angle θ =AB = 8k
Side adjacent to angle θ =BC = 15k
where, k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (8k)2 + (15k)2 = (AC)2
⇒ (AC)2 = 64k2+225k2
⇒ (AC)2 = 289 k2
⇒ AC =√289 k2
⇒ AC =±17k
But side AC can’t be negative. So, AC = 17k
Now, we will find the cos θ
We know that
Side adjacent to angle θ = BC = 15k
and Hypotenuse = AC = 17k
So,
Now, we have to find the value of 1+ cos2 θ
Putting the value of cos θ, we get
If , evaluate
(i)
(ii)
Given:
We know that,
Or
Let,
Side adjacent to angle θ =AB = 7k
Side opposite to angle θ =BC = 8k
where, k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (7k)2 + (8k)2 = (AC)2
⇒ (AC)2 = 49 k2 +69 k2
⇒ (AC)2 = 113 k2
⇒ AC =√113 k2
⇒ AC =k√113
(i)
We know that,
(a+b)(a – b) = (a2 – b2)
So, using this identity, we get
(ii) cot2 θ
Given
If 3 cot A = 4, check whether =cos2A–sin2 A or not.
Given: 3cot A = 4
We know that,
Or
Let,
Side adjacent to angle A =AB = 4k
The side opposite to angle A =BC = 3k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (4k)2 + (3k)2 = (AC)2
⇒ (AC)2 = 16 k2 + 9 k2
⇒ (AC)2 = 25 k2
⇒ AC =√25k2
⇒ AC = ±5k [taking positive square root since, side cannot be negative]
and
Now,
…(i)
And RHS = cos2 A – sin2 A
=
…(ii)
From Eqs. (i) and (ii) LHS =RHS
Hence Proved
In a right triangle ABC, right angled at B, if tan A = 1, then verify that 2 sin A cos A = 1.
tan A = 1
As we know
Now construct a right angle triangle right angled at B such that
∠ BAC = θ
Hence perpendicular = BC = 1 and base = AB = 1
By Pythagoras theorem,
AC2 = AB2 + BC2
⇒ AC2 = (1)2 + (1)2
⇒ AC2 = 2
⇒ AC =
As,
⇒
Hence,
2 sin A cos A=
⇒ 2 sin A cos A=
⇒ 2 sin A cos A=1
= R.H.S
Hence proved.
If 4sin2 θ =3 and 0o < θ <90o, find the value of 1 + cos θ.
4sin2 θ =3
But it is given 0o< θ <90o
So,
Let, P =k√3 and H =2k
In right angled ∆ABC, we have
B2 + P2 = H2
⇒ B2 + (k√3)2 = (2k)2
⇒ B2 + 3k2 = 4k2
⇒ B2 = 4k2 – 3k2
⇒ B2 = k2
⇒ B = ±k
⇒ B = k [taking positive square root since, side cannot be negative]
So,
If find the value of .
Given:
Now,
If 13 cos θ = 5, .
Given: 13 cosθ = 5
We know that,
Let AB =5k and BC = 13k
In right angled ∆ABC, we have
B2 + P2 = H2
⇒ (5k)2 + P2 = (13k)2
⇒ P2 + 25k2 = 169k2
⇒ P2 = 169k2 – 25k2
⇒ P2 = 144k2
⇒ P =√144k2
⇒ P = ±12k
⇒ P = 12k [taking positive square root since, side cannot be negative]
Now,
If , show that =3.
Given:
We know that,
Let,
BC = 5k and AC = 13k
where, k is any positive integer.
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
⇒ (AB)2 + (5k)2 = (13k )2
⇒ (AB)2 + 25k2 = 169k2
⇒ (AB)2 = 169k2 – 25k2
⇒ (AB)2 = 144k2
⇒ AB = √144k2
⇒ AB =±12k [taking positive square root since, side cannot be negative]
Now, we have to find the value of other trigonometric ratios.
We, know that
Now, LHS =
=3 =RHS
Hence Proved
If 2 tan θ = 1, find the value of .
Given: 2 tan θ = 1
We know that,
Or
Let,
Side opposite to angle θ =AB = 1k
Side adjacent to angle θ =BC = 2k
where, k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (k)2 + (2k)2 = (AC)2
⇒ (AC)2 = k2+4k2
⇒ (AC)2 = 5k2
⇒ AC =√5k2
⇒ AC =±k√5
But side AC can’t be negative. So, AC = k√5
Now, we will find the sin θ and cos θ
We know that
Side adjacent to angle θ = BC = 2k
and Hypotenuse = AC = k√5
So,
And
Side adjacent to angle θ =AB = 1k
And Hypotenuse =AC = k√5
So,
Now,
If 5 tan α = 4, show that .
Given: 5 tan = 4
⇒ tan α
We know that,
Or
Let,
The side opposite to angle α =AB = 4k
The side adjacent to angle α =BC = 5k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (4k)2 + (5k)2 = (AC)2
⇒ (AC)2 = 16k2+25k2
⇒ (AC)2 = 41k2
⇒ AC =√41k2
⇒ AC =±k√41
But side AC can’t be negative. So, AC = k√41
Now, we will find the sin α and cos α
We know that
Side adjacent to angle α = BC = 5k
and Hypotenuse = AC = k√41
So,
And
Side adjacent to angle α =AB = 4k
And Hypotenuse =AC = k√5
So,
Now, LHS
= RHS
Hence Proved
If prove that .
We know that,
Or
Let,
Side adjacent to angle θ =AB = 3k
The side opposite to angle θ =BC = 4k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (3k)2 + (4k)2 = (AC)2
⇒ (AC)2 = 9k2 +16k2
⇒ (AC)2 = 25k2
⇒ AC =√25k2
⇒ AC =±5k
But side AC can’t be negative. So, AC = 5k
Now, we will find the sin θ
Side opposite to angle θ = BC = 4k
and Hypotenuse = AC = 5k
So,
Now, we know that,
The side adjacent to angle θ = AB =3k
Hypotenuse = AC =5k
So,
And
Now, LHS
= RHS
Hence Proved
If verify that: .
We know that,
Or
Let,
Side adjacent to angle θ =AB = 1k
Side opposite to angle θ =AC = k√3
where, k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (AC)2 = (BC)2
⇒ (1k)2 + (√3k)2 = (BC)2
⇒ (BC)2 = 1 k2 +3 k2
⇒ (BC)2 = 4 k2
⇒ BC =√2 k2
⇒ BC =±2k
But side BC can’t be negative. So, BC = 2k
Now, we will find the sin θ and cos θ
Side opposite to angle θ = AC = k√3
and Hypotenuse = BC = 2k
So
Now, we know that,
Side adjacent to angle θ = AB =1k
Hypotenuse = BC =2k
So,
Now, LHS
= RHS
Hence Proved
If find the value of x sin θ + y cos θ.
We know that,
Or
Let,
Side opposite to angle θ =AB = x
Side adjacent to angle θ =BC = y
where, k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (x)2 + (y)2 = (AC)2
⇒ (AC)2 = x2+y2
⇒ AC =√( x2+y2)
Now, we will find the sin θ and cos θ
We know that
Side adjacent to angle θ = BC = y
and Hypotenuse = AC = √( x2+y2)
So,
And
Side adjacent to angle θ =AB = x
And Hypotenuse =AC = √( x2+y2)
So,
Now, x sin θ +y cos θ
= √( x2+y2)
If , find the value of tan2θ + sinθ cosθ + cotθ.
Given: Sin θ
We know that,
Or
Let,
Perpendicular =AB =3k
and Hypotenuse =AC =5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
In right angled ∆ ABC, we have
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (3k)2 + (BC)2 = (5k)2
⇒ 9k2 + (BC)2 = 25k2
⇒ (BC)2 = 25 k2 –9k2
⇒ (BC)2 = 16k2
⇒ BC =√16k2
⇒ BC =±4k
But side BC can’t be negative. So, BC = 4k
Now, we have to find the value of cos θ and tan θ
We know that,
The side adjacent to angle θ or base = BC =4k
Hypotenuse = AC =5k
So,
Now,
We know that,
Perpendicular = AB =3k
Base = BC =4k
So,
Now, tan2 θ + sin θ cos θ + cot θ
If 4cot θ = 3, show that .
Given: cot θ
We know that,
Or
Let,
Side adjacent to angle θ =AB = 3k
The side opposite to angle θ =BC = 4k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (3k)2 + (4k)2 = (AC)2
⇒ (AC)2 = 9k2 +16k2
⇒ (AC)2 = 25k2
⇒ AC =√25k2
⇒ AC =±5k
But side AC can’t be negative. So, AC = 5k
Now, we will find the sin θ
Side opposite to angle θ = BC = 4k
and Hypotenuse = AC = 5k
So,
Now, we know that,
Side adjacent to angle θ = AB =3k
Hypotenuse = AC =5k
So,
Now, LHS
= 7 = RHS
Hence Proved
If , prove that
Given: Sin θ
We know that,
Or
Let,
Perpendicular =AB =m
and Hypotenuse =AC =√(m2 + n2)
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
In right angled ∆ ABC, we have
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (m)2 + (BC)2 = (√(m2 + n2))2
⇒ m2 + (BC)2 = m2 + n2
⇒ (BC)2 = m2 + n2 – m2
⇒ (BC)2 = n2
⇒ BC =√n2
⇒ BC =±n
But side BC can’t be negative. So, BC = n
Now, we have to find the value of cos θ and tan θ
We know that,
Side adjacent to angle θ or base = BC =n
Hypotenuse = AC =√(m2 + n2)
So,
Now, LHS = m sin θ +n cosθ
=√(m2 + n2) = RHS
Hence Proved
If show that
We know that,
Or
Let,
Base =BC = 12k
Hypotenuse =AC = 13k
Where, k ia any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (AB)2 + (12k)2 = (13k)2
⇒ (AB)2 + 144k2 = 169k2
⇒ (AB)2 = 169 k2 –144 k2
⇒ (AB)2 = 25 k2
⇒ AB =√25 k2
⇒ AB =±5k
But side AB can’t be negative. So, AB = 5k
Now, we have to find sin α and tan α
We know that,
Side opposite to angle α = AB =5k
And Hypotenuse = AC =13k
So,
We know that,
Side opposite to angle α = AB =5k
Side adjacent to angle α = BC =12k
So,
Now, LHS = sin α (1 – tan α)
= RHS
Hence Proved
If , prove that q sin θ = p.
Given : q cos θ = √(q2 – p2)
We know that,
Or
Let,
Base =BC = √(q2 – p2)
Hypotenuse =AC = q
Where, k ia any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (AB)2 + (√(q2 – p2))2 = (q)2
⇒ (AB)2 + (q2 – p2) = q2
⇒ (AB)2 = q2 – q2 + p2)
⇒ (AB)2 = p2
⇒ AB =√p2
⇒ AB =±p
But side AB can’t be negative. So, AB = p
Now, we have to find sin θ
We know that,
The side opposite to angle θ = AB =p
And Hypotenuse = AC =q
So,
Now, LHS = q sin θ
= q = RHS
Hence Proved
If , show that :
Given: Sin θ
We know that,
Or
Let,
Perpendicular =AB =3k
and Hypotenuse =AC =5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
In right angled ∆ ABC, we have
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (3k)2 + (BC)2 = (5k)2
⇒ 9k2 + (BC)2 = 25k2
⇒ (BC)2 = 25 k2 –9k2
⇒ (BC)2 = 16k2
⇒ BC =√16k2
⇒ BC =±4k
But side BC can’t be negative. So, BC = 4k
Now, we have to find the value of cos θ and tan θ
We know that,
The side adjacent to angle θ or base = BC =4k
Hypotenuse = AC =5k
So,
Now,
We know that,
Perpendicular = AB =3k
Base = BC =4k
So,
Now, LHS
= RHS
Hence Proved
Find the value of
cos A sin B + sin A. cos B, if sin A= 4/5 and cos B = 12/13.
Given:
To find: cos A sin B + sin A cos B
As, we have the value of sin A and cos B but we don’t have the value of cos A and sin B
So, First we find the value of cos A and sin B
We know that,
Or
Let,
Side opposite to angle A = 4k
and Hypotenuse = 5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (P)2 + (B)2 = (H)2
⇒ (4k)2 + (B)2 = (5)2
⇒ 16 k2 + (B)2 = 25 k2
⇒ (B)2 = 25 k2 –16 k2
⇒ (B)2 = 9 k2
⇒ B =√9 k2
⇒ B =±3k [taking positive square root since, side cannot be negative]
So, Base = 3k
Now, we have to find the value of cos A
We know that,
Side adjacent to angle A =3k
Hypotenuse =5k
So,
Now, we have to find the sin B
We know that,
Let,
Side adjacent to angle B =12k
Hypotenuse =13k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (B)2 + (P)2 = (H)2
⇒ (12k)2 + (P)2 = (13)2
⇒ 144 k2 + (P)2 = 169 k2
⇒ (P)2 = 169 k2 –144 k2
⇒ (P)2 = 25 k2
⇒ P =√25 k2
⇒ P =±5k [taking positive square root since, side cannot be negative]
So, Perpendicular = 5k
Now, we have to find the value of sin B
We know that,
Now, cos A sin B + sin A cos B
Putting the values of sin A, sin B cos A and Cos B, we get
Find the value of
sin A. cos B – cos A. sin B, if tan A= √3 and sin B = 1/2.
Given: tan A =√3 and
We know that,
Or
Let,
Side opposite to angle θ = 1k
and Hypotenuse = 2k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (AC)2 + (BC)2 = (AB)2
⇒ (1k)2 + (BC)2 = (2k)2
⇒ k2 + (BC)2 = 4k2
⇒ (BC)2 = 4k2 –k2
⇒ (BC)2 = 3 k2
⇒ BC =√3k2
⇒ BC =k√3
So, BC = k√3
Now, we have to find the value of cos B
We know that,
The side adjacent to angle B = BC =k√3
Hypotenuse = AB =2k
So,
We know that,
Or
Given: tan A = √3
Let,
The side opposite to angle A =BC = √3k
The side adjacent to angle A =AB = 1k
where k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (1k)2 + (√3k)2 = (AC)2
⇒ (AC)2 = 1 k2 +3 k2
⇒ (AC)2 = 4 k2
⇒ AC =√2 k2
⇒ AC =±2k
But side AC can’t be negative. So, AC = 2k
Now, we will find the sin A and cos A
Side opposite to angle A = BC = k√3
and Hypotenuse = AC = 2k
So,
Now, we know that,
The side adjacent to angle A = AB =1k
Hypotenuse = AC =2k
So,
Now, sin A. cos B – cos A. sin B
Putting the values of sin A, sin B cos A and Cos B, we get
Find the value of
sin A. cos B + cos A. sin B. if and tan B = √3.
Given:
Let,
Side opposite to angle A =BC = 1k
Side adjacent to angle A =AB = k√3
where, k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (√3k)2 + (1k)2 = (AC)2
⇒ (AC)2 = 1 k2 +3 k2
⇒ (AC)2 = 4 k2
⇒ AC =√2 k2
⇒ AC =±2k
But side AC can’t be negative. So, AC = 2k
Now, we will find the sin A and cos A
Side opposite to angle A = BC = k
and Hypotenuse = AC = 2k
So,
Now, we know that,
Side adjacent to angle A = AB =k√3
Hypotenuse = AC =2k
So,
Now,
Given: tan B = √3
Let,
Side opposite to angle B =AC = √3k
Side adjacent to angle B =AB = 1k
where, k is any positive integer
Firstly we have to find the value of BC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (AC)2 = (BC)2
⇒ (1k)2 + (√3k)2 = (BC)2
⇒ (BC)2 = 1 k2 +3 k2
⇒ (BC)2 = 4 k2
⇒ BC =√2 k2
⇒ BC =±2k
But side BC can’t be negative. So, BC = 2k
Now, we will find the sin B and cos B
Side opposite to angle B = AC = k√3
and Hypotenuse = BC = 2k
So,
Now, we know that,
Side adjacent to angle B = AB =1k
Hypotenuse = BC =2k
So,
Now, sin A. cos B + cos A. sin B
Putting the values of sin A, sin B cos A and Cos B, we get
=1
Find the value of
, if sin A = and cos B=
Given
We know that,
Or
Let,
Side opposite to angle A = k
and Hypotenuse = k√2
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (P)2 + (B)2 = (H)2
⇒ (k)2 + (B)2 = (k√2)2
⇒ k2 + (B)2 = 2k2
⇒ (B)2 = 2k2 – k2
⇒ (B)2 = k2
⇒ B =√k2
⇒ B =±k [taking positive square root since, side cannot be negative]
So, Base = k
Now, we have to find the value of tan A
We know that,
So,
Now, we have to find the tan B
We know that,
Let,
Side adjacent to angle B =k√3
Hypotenuse =2k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (B)2 + (P)2 = (H)2
⇒ (k√3)2 + (P)2 = (2k)2
⇒ 3k2 + (P)2 = 4k2
⇒ (P)2 = 4k2 –3 k2
⇒ (P)2 = k2
⇒ P =√k2
⇒ P =±k [taking positive square root since, side cannot be negative]
So, Perpendicular = k
Now, we have to find the value of sin B
We know that,
So,
Now,
Now, multiply and divide by the conjugate of √3 – 1, we get
[∵ (a – b)(a+b) = (a2 – b2)]
⇒ 2+√3
Find the value of
sec A. tan A+tan2A – cosec A, if tan A =2
Given: tan A = 2 ⇒ tan2A = 4
We know that, sec2 A = 1+ tan2A
⇒ sec2 A = 1 + 4
⇒ sec2 A = 5
⇒ sec A =√5
Now, we know that tan A
⇒ 2 =√5 sin A
Now, putting all the values in the given equation, we get
sec A. tan A+tan2A – cosec A
Find the value of
, if cosec A = 2
Given: cosec A =2
Now, we have to find
First, we simplify the above given trigonometry equation, we get
Taking the LCM, we get
[∵ cos2θ +sin2 θ = 1]
[∵ cosec θ ]
⇒ cosec A
⇒ 2
If , prove that : 3 cos B – 4cos3 B = 0
Given:
We know that,
Or
Let,
Perpendicular =AB =k
and Hypotenuse =AC =2k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
In right angled ∆ ABC, we have
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (k)2 + (BC)2 = (2k)2
⇒ k2 + (BC)2 = 4k2
⇒ (BC)2 = 4k2 –k2
⇒ (BC)2 = 3k2
⇒ BC =√3k2
⇒ BC =k√3
So, BC = k√3
Now, we have to find the value of cos B
We know that,
Side adjacent to angle B or base = BC = k√3
Hypotenuse = AC =2k
So,
Now, LHS = 3 cos B – 4cos3 B
=RHS
Hence Proved
If , prove that: 3sinθ – 4sin3θ = 1.
We know that,
Let AB =k√3 and BC = 2k
In right angled ∆ABC, we have
B2 + P2 = H2
⇒ (k√3)2 + P2 = (2k)2
⇒ P2 + 3k2 = 4k2
⇒ P2 = 4k2 – 3k2
⇒ P2 = k2
⇒ P =√k2
⇒ P = ±k
⇒ P = k [taking positive square root since, side cannot be negative]
Now,
We know that,
Or
Now, LHS = 3sin θ – 4sin3 θ
⇒ 1 = RHS
Hence Proved
If , prove that :
Given:
We know that,
Let,
BC = 4k and AC = 5k
where, k is any positive integer.
In right angled ∆ABC, we have
(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]
⇒ (AB)2 + (4k)2 = (5k )2
⇒ (AB)2 + 16k2 = 25k2
⇒ (AB)2 = 25k2 – 16k2
⇒ (AB)2 = 9k2
⇒ AB = √9k2
⇒ AB =±3k [taking positive square root since, side cannot be negative]
Now, we have to find the value of other trigonometric ratios.
We, know that
Now, LHS
Now, RHS =
∴ LHS = RHS
Hence Proved
, prove that : tan2B – sin2 B=sin4 B sec2 B.
We know that,
Or
Let,
Side adjacent to angle B =AB = 12k
Side opposite to angle B =BC = 5k
where, k is any positive integer
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (12k)2 + (5k)2 = (AC)2
⇒ (AC)2 = 144 k2 +25 k2
⇒ (AC)2 = 169 k2
⇒ AC =√169 k2
⇒ AC =±13k
But side AC can’t be negative. So, AC = 13k
Now, we will find the sin θ
Side opposite to angle B = BC = 5k
and Hypotenuse = AC = 13k
So,
Now, we know that,
Side adjacent to angle B = AB =12k
Hypotenuse = AC =13k
So,
Now, LHS = tan2B – sin2 B
Now, RHS = sin4 B sec2 B
Now, LHS = RHS
Hence Proved
If , prove that =
Given:
Now, squaring both the sides, we get
⇒ p2 = q2 tan2θ …(1)
Now, solving LHS
Putting the value of p2 in the above equation, we get
[∵ 1+ tan2 θ = sec2 θ]
(from Eq. (1))
[∵(a + b) (a – b) = (a2 – b2)]
Now, we solve the RHS
[∵ 1+ tan2 θ = sec2 θ]
∴ LHS = RHS
Hence Proved
In the given figure, BC = 15 cm and sin B = 4/5, show that
Given: BC =15cm and
We know that,
Or
Let,
Side opposite to angle B = 4k
and Hypotenuse = 5k
where, k is any positive integer
So, by Pythagoras theorem, we can find the third side of a triangle
⇒ (AC)2 + (BC)2 = (AB)2
⇒ (4k)2 + (BC)2 = (5)2
⇒ 16k2 + (BC)2 = 25k2
⇒ (BC)2 = 25 k2 –16 k2
⇒ (BC)2 = 9 k2
⇒ BC =√9 k2
⇒ BC =±3k
But side BC can’t be negative. So, BC = 3k
Now, we have to find the value of cos B and tan B
We know that,
Side adjacent to angle B = BC =3k
Hypotenuse = AB =5k
So,
Now, tan B
We know that,
side opposite to angle B = AC =4k
Side adjacent to angle B = BC =3k
So,
Now,
= –1 = RHS
Hence Proved
In the given figure, find 3 tan θ – 2 sin α + 4 cos α.
First of all, we find the value of RS
In right angled ∆RQS, we have
(RQ)2 + (QS)2 = (RS)2
⇒ (8)2 + (6)2 = (RS)2
⇒ 64 + 36 = (RS)2
⇒ RS =√100
⇒ RS =±10 [taking positive square root, since side cannot be negative]
⇒ RS =10
Now, we find the value of QP
In right angled ∆RQP
(RQ)2 + (QP)2 = (RP)2
⇒ (8)2 + (QP)2 = (17)2
⇒ 64 + (QP)2 = 289
⇒ (QP)2 =289–64
⇒ (QP)2 =225
⇒ QP =√225
⇒ QP =±15 [taking positive square root, since side cannot be negative]
⇒ QP =15
tan θ
Now, 3 tan θ – 2 sinα + 4cos α
⇒
⇒
⇒
In the given figure ABC is right angled at B and BD is perpendicular to AC. Find (i) cos θ, (ii) cot α.
Firstly, we find the value of AC
In right angled ∆ABC
(AB)2 + (BC)2 = (AC)2
⇒ (12)2 + (5)2 = (AC)2
⇒ 144+25 =(AC)2
⇒ (AC)2 =169
⇒ AC =√169
⇒ AC =±13
⇒ AC =13 [taking positive square root since, side cannot be negative]
(i)
(ii)
If 5 sin2 θ + cos2 θ = 2, find the value of sin θ.
Given: 5 sin2 θ + cos2 θ = 2
⇒ 5 sin2 θ + (1– sin2 θ) = 2 [∵ sin2 θ + cos2 θ = 1]
⇒ 5 sin2 θ + 1 – sin2 θ = 2
⇒ 4 sin2 θ = 2 – 1
⇒ 4 sin2 θ = 1
If 7 sin2 θ + 3 cos2 θ =4, find the value of tan θ.
Given : 7 sin2 θ + 3 cos2 θ =4
⇒ 7 sin2 θ + 3(1– sin2 θ) = 4 [∵ sin2 θ + cos2 θ = 1]
⇒ 7 sin2 θ + 3 –3 sin2 θ = 4
⇒ 4 sin2 θ = 4 – 3
⇒ 4 sin2 θ = 1
Put the value of in given equation, we get
⇒
⇒
Now, we know that tan θ
If 4 cos θ + 3 sin θ = 5, find the value of tan θ.
Given : 4 cos θ+ 3 sin θ = 5
Squaring both the sides, we get
⇒ (4 cos θ+ 3 sin θ)2 = 25
⇒ 16 cos2 θ + 9 sin2 θ + 2(4cos θ)(3sin θ)= 25 [∵ (a + b)2 =a2 +b2 +2ab]
⇒ 16 cos2 θ + 9 sin2 θ + 24 cosθ sinθ = 25
Divide by cos2 θ, we get
⇒ 16 + 9tan2 θ + 24 tanθ = 25sec2 θ
⇒ 16 + 9tan2 θ + 24 tanθ = 25(1 + tan2 θ) [∵ 1+ tan2θ = sec2 θ]
⇒ 16 + 9tan2 θ + 24 tanθ = 25+ 25 tan2 θ
⇒ 16tan2 θ – 24tanθ + 9 = 0
⇒ 16tan2 θ – 12 tanθ – 12 tanθ +9 = 0
⇒ 4tanθ (4tan θ – 3) – 3(4tan θ – 3) = 0
⇒ (4tan θ – 3)2 = 0
If 7 sin A + 24 cos A = 25, find the value of tan A.
Given : 7 sin A + 24 cos A = 25
Squaring both the sides, we get
⇒ (7 sin A + 24 cos A)2 = 625
⇒ 49 sin2 A +576 cos2 A + 2(7sin A) (24cos A) = 625 [∵ (a + b)2 =a2 +b2 +2ab]
⇒ 49 sin2 A +576 cos2 A + 336 cosA sinA = 625
Divide by cos2 θ, we get
⇒ 49tan2 A +576+ 336 tanA = 625sec2 A
⇒ 49tan2 A +576+ 336 tanA = 625(1 + tan2 A) [∵ 1+ tan2θ = sec2 θ]
⇒ 49tan2 A +576+ 336 tanθA = 625+625 tan2 A
⇒ 576tan2 A – 336tanA + 49 = 0
⇒ 576tan2 A – 168 tanA – 168 tanA +49 = 0
⇒ 24tanθ (24tan A – 7) – 7(24tan A – 7) = 0
⇒ (24tan A – 7)2 = 0
If 9 sin θ + 40 cos θ= 41, find the value of cos θ and cosec θ
Given: 9 sin θ + 40 cos θ= 41
⇒ 9sinθ = 41 – 40 cosθ …(i)
Squaring both sides, we get
⇒ 81sin2 θ = 1681+1600 cos2 θ – 2(41) (40cos θ) [∵ (a – b)2 =a2 +b2 –2ab]
⇒ 81 (1– cos2 θ) =1681+1600 cos2 θ – 3280cosθ
⇒ 81 – 81cos2 θ = 1681 +1600cos2 θ – 3280 cosθ
⇒ 1681cos2 θ –3280cos θ +1600 = 0
⇒ (41)2 cos2 θ – 2(41) (40cos θ) + (40)2 = 0
⇒ (41cos θ – 40 )2 = 0
Now, putting the value of cos θ in Eq. (i), we get
If tan A + sec A = 3, find the value of sin A.
tan A + sec A = 3
⇒ tanA = 3 – secA
Squaring both the sides, we get
⇒ tan2 A =(3 – secA)2
⇒ tan2 A = 9 + sec2A – 6sec A
⇒ sec2 A – 1 = 9 + sec2A – 6sec A [∵ 1+ tan2 A = sec2 A]
⇒ –1 – 9 = –6secA
⇒ – 10 = –6sec A
Now, tan A + sec A = 3
⇒ sin A = 3cosA – 1
If cosec A + cot A = 5, find the value of cos A.
cosec A + cot A = 5
⇒ cotA = 5 – cosecA
Squaring both the sides, we get
⇒ cot2 A =(5 – cosecA)2
⇒ cot2 A = 25 + cosec2A – 10cosec A
⇒ cosec2 A – 1 = 25 + cosec2A – 10cosec A [∵ 1+ cot2 A = cosec2 A]
⇒ –1 – 25 = –10cosecA
⇒ – 26 = –10cosec A
Now, cosec A + cot A = 5
If tan θ + sec θ = x, show that sin θ=
tan θ+ sec θ = x
⇒ tan θ = x – sec θ
Squaring both sides, we get
⇒ tan2 θ =(x – secθ)2
⇒ tan2 θ = x2 + sec2θ – 2xsec θ
⇒ sec2 θ – 1 = x2 + sec2θ – 2xsec θ [∵ 1+ tan2 A = sec2 A]
⇒ –1 – x2 = –2xsecθ
Now,
tan θ = x – sec θ
= RHS
Hence Proved
If cos θ +sin θ=1, prove that cos θ – sin θ = ± 1
Using the formula,
(a+b)2 + (a – b)2 = 2(a2+b2)
⇒ (cos θ +sin θ)2 + (cos θ – sin θ)2 = 2(cos2θ + sin2 θ)
⇒ 1 + (cos θ – sin θ)2 = 2(1)
⇒ (cos θ – sin θ)2 = 2 –1
⇒ (cos θ – sin θ)2 = 1
⇒ (cos θ – sin θ) =√1
⇒ (cos θ – sin θ) = ±1
Find the value of the following :
(i) sin 30o + cos 60o
(ii) sin2 45o+cos245o
(iii) sin 30o + cos 60o – tan45o
(iv)
(v) tan 60o x cos30o
(i) sin 30o + cos 60o
We know that,
>
So,
sin(30o) + cos(60o)
=1
(ii) sin2 45o+cos245o
We know that,
So, sin2 45o+cos245o
=1
(iii) sin 30o + cos 60o – tan45o
So,
sin 30o + cos 60o – tan 45o
=0
(iv)
We know that
tan(60o) = √3
So,
=√4
= 2
(v) tan 60o × cos30o
tan(60o) = √3
So,
tan 60o × cos30o
If θ = 45°, find the value of
(i)
(ii) cos2 θ - sin2 θ
(i)
Given θ =45°
We know that,
tan(45o) = 1
= 1+ 2
= 3
(ii) cos2 θ – sin2 θ
Given θ = 45°
So, cos2 45° – sin2 45°
= 0
Find the numerical value of the following :
sin45°.cos45° – sin230°.
We know that,
Now, putting the values
Find the numerical value of the following :
We know that,
tan (60°) = √3
Now putting the values;
Multiplying and dividing by the conjugate of (1+√3)
[∵(a)2 – (b)2 = (a+b)(a-b)]
Multiplying and dividing by (-2)
= 3 - √3
We know that,
tan (60o) =
Now putting the values;
= 1
Find the numerical value of the following :
We know that
Now putting the value, we get
=
=
Find the numerical value of the following :
sin2 60° – cos2 60°
We know that,
Now putting the value;
Find the numerical value of the following :
4sin2 30° + 3 tan 30° – 8 sin 45° cos 45°
We know that,
Now putting the value, we get
= 1 + 1 – 4
= -2
Find the numerical value of the following :
2sin230° – 3cos2 45° + tan2 60ׄ°
We know that,
Tan (60o) = √3
Now putting the value;
=2
Find the numerical value of the following :
sin 90° + cos 0° + sin 30° + cos 60°
We know that,
Sin (90o) = 1
Cos (0o) = 1
Now putting the value;
= 3
Find the numerical value of the following :
sin 90° – cos 0° + tan 0° + tan 45°
We know that
Sin (90o) = 1
Cos (0o) = 1
Tan(0o) = 0
Tan(45o) = 1
Now putting the value, we get
= 1 – 1 + 0 + 1
= 1
Find the numerical value of the following :
where π = 180°
We know that
Cos (0o) = 1
Tan (45o) = 1
Now putting the values;
Find the numerical value of the following :
We know that,
Cot (45o) = 1
Sin (90o) = 1
Now putting the values, we get
= 1-3+2
=0
Find the numerical value of the following :
We can write the above equation as:
= 4 cot2 60o + sec2 30o – sin2 45o …(a)
Now putting the values in (a);
Find the numerical value of the following :
cos60° . cos 30° – sin 60° . sin 30°
We know that,
Now putting the values, we get
= 0
Find the numerical value of the following :
We know that,
cos(90o) = 0
Now putting the values;
= 3
Evaluate the following :
sin30°.cos45° + cos30°.sin45°
We know that,
Now putting the values, we get
Evaluate the following :
cosec230°.tan245° – sec260°
We know that
cosec (30o) = 2
Tan(45o) = 1
sec (60 o) = 2
Now putting the values;
= (2)2 × (1)2 - (2)2
= 4 – 4
= 0
Evaluate the following :
2sin230°.tan60° – 3cos260°.sec230°
We know that
tan (60o) = √3
Now putting the values;
Evaluate the following :
tan60° . cosec245° + sec260°.tan45°
We know that
tan (60o) = √3
cosec (45o) = √2
sec (60 o) = 2
tan(45o) = 1
Now putting the values;
= (√3) × (√2)2 + (2)2 × (1)
= 2 +4
=2 (√3 + 2)
Evaluate the following :
tan30°.sec45° + tan60°.sin30°
We know that
sec (45o) = √2
tan (60o) = √3
Now putting the values, we get
Evaluate the following :
cos30°.cos45° – sin30°.sin45°
We know that
Now putting the values, we get
Multiplying and dividing by ), we get
=
Evaluate the following :
We know that
tan (60o) = √3
tan(45o) = 1
Now putting the values;
Evaluate the following :
We know that
tan (60o) =
cos(90o) = 0
cosec (30o) = 2
sec (60 o) = 2
cot (30o) = √3
Now putting the values, we get
=
=
=
= 9
Evaluate the following :
We know that
tan (45o) = 1
Now putting the values, we get
Prove the following :
When α =60°
Solving, L.H.S.
= [(a)2 – (b)2 = (a+b)(a-b)]
=
We know that
Putting the values, we get
= 3 = R.H.S.
Prove the following :
cos(A – B) = cos A. cos B + sinA . sin B if A=B=60o
Solving, L.H.S.
= cos (60o – 60o) [Putting the value A=B=60o]
= cos (0o)
= 1
Solving, R.H.S.
= cos (60o) × cos (60o) + sin (60o) × sin (60o) [Putting the value A=B=60o]
= cos2(60o) + sin2(60o)
We know that,
= 1
∴ LHS = RHS
Hence Proved
Prove the following :
4(sin430° + cos4 60°) – 3(cos2 45° – sin290°) = 2
We know that,
Sin (90o) = 1
Now solving, L.H.S.
= 4[{(sin 30o)2}2 + {(cos 60o)2}2] – 3[(cos 45o)2 - (sin 90o)2]
Putting the values
=2 = R.H.S.
Hence Proved
Prove the following :
sin90° = 2sin45°.cos45°
We know that,
sin (90o) = 1
Taking LHS = sin 90° = 1
Now, taking RHS
= 1
= R.H.S.
Hence Proved
Prove the following :
cos60° = 2cos230° – 1 = 1 – 2 sin230°
We know that,
Taking LHS = cos 60°
Now, solving RHS = 2cos2 30° - 1 , we get
= RHS
Now taking RHS = 1- 2sin2 30°
= RHS
Hence, proved.
Prove the following :
cos90° = 1 – 2 sin245° = 2cos245° – 1
We know that
cos(90o) = 0
taking LHS = cos 90° = 0
Now solving RHS 1- 2sin2 45°
= 1- 1
= 0
= RHS
Now, solving RHS = 2cos2 45° - 1 , we get
= 1- 1
= 0
Hence, proved.
Prove the following :
sin30°.cos60° + cos30°.sin60° = sin90°
We know that
sin (90o) = 1
Taking LHS =
= 1
Now, RHS = sin 90° = 1
∴ LHS = RHS
Hence, proved.
Prove the following :
cos60°.cos30° – sin60°. sin30° = cos 90°
We know that
cos(90o) = 0
Taking LHS
= 0
Now, RHS = cos 90° = 0
∴ LHS =RHS
Hence, proved.
Prove the following :
We know that,
Taking LHS =
Now, solving RHS
∴ L.H.S. = R.H.S.
Hence, proved.
Prove the following :
We know that
tan(60o) = √3
Taking LHS
Now, RHS =
∴L.H.S. = R.H.S.
Hence, proved.
Prove the following :
Taking LHS
Multiplying and Dividing, LHS by (√3- 1)
[(a)2 – (b)2 = (a+b)(a-b)]
Multiplying and Dividing, LHS by 2
= 2- √3
Now, RHS
= 2- √3
∴ LHS = RHS
Hence, proved.
Prove the following :
We know that
Taking LHS
Now, RHS=
∴ LHS =RHS
Hence Proved
Prove the following :
We know that
Taking LHS =
Now, solving RHS = 2 sin 30° cos 30°
= LHS
Now, RHS
∴ LHS =RHS
Hence proved
If A=60o and B = 30o, verify that :
cos (A+B) = cos A cos B – sin A sin B
Given: A=60o and B =30o
Now, LHS = Cos (A+B)
⇒ Cos (60 o + 30 o)
⇒ Cos (90 o)
⇒ 0 [∵ cos 90 o = 0]
Now, RHS = Cos A Cos B – Sin A Sin B
⇒ cos(60 o) cos(30 o) – sin(60 o) sin (30 o)
⇒ 0
∴ LHS = RHS
Hence Proved
If A=60o and B = 30o, verify that :
sin (A – B) = sin A cos B – cos A sin B
Given: A=60o and B =30o
Now, LHS = Sin (A-B)
⇒ Sin (60 o - 30 o)
⇒ Sin (30 o)
Now, RHS = Sin A Cos B – Cos A Sin B
⇒ sin(60 o) cos(30 o) – cos(60 o) sin (30 o)
∴ LHS = RHS
Hence Proved
If A=60o and B = 30o, verify that :
tan (A – B) =
Given: A=60o and B =30o
Now, LHS = tan (A-B)
⇒ tan (60 o - 30 o)
⇒ tan (30 o)
Now, RHS
∴ LHS = RHS
Hence Proved
If A = 30o, verify that :
sin 2A = 2 sin A cos A
Given: A =30o
Now, LHS = sin 2(30o)
⇒ sin 60o
Now, RHS = 2 sin A cos A
⇒ 2 sin (30o) cos (30o)
∴ LHS = RHS
Hence Proved
If A = 30o, verify that :
cos 2A = 1-2 sin2A=2cos2 A – 1
Given: A =30o
Now, LHS = cos 2(30o)
⇒ cos 60o
Now, RHS = 1- 2sin2 A
⇒ 1- 2sin2 (30o)
Now, RHS = 2cos2 A – 1
⇒ 2cos2 (30o) - 1
∴ LHS = RHS
Hence Proved
If θ = 30°, verify that :
sin 3θ = 3 sinθ – 4 sin3θ
Given: θ =30o
Now, LHS = sin 3(30o)
⇒ sin 90o
= 1
Now, RHS = 3 sin θ - 4 sin3 θ
⇒ 3 sin (30o) - 4 sin3 (30o)
= 1
∴ LHS = RHS
Hence Proved
If θ = 30°, verify that :
cos3θ = 4cos3θ – 3cosθ
Given: θ =30o
Now, LHS = cos 3(30o)
⇒ cos 90o
= 0
Now, RHS = 4 cos3 θ - 3 cos θ
⇒ 4 cos3 (30o) - 3 cos (30o)
= 0
∴ LHS = RHS
Hence Proved
If sin (A + B) = 1 and cos (A – B) = , then find A and B.
Given : sin (A+B) =1
⇒ Sin(A+B) = sin (90 o) [∵ sin (90 o)=1]
On equating both the sides, we get
A + B = 90 o …(1)
And
⇒ cos(A – B) = cos (30 o)
On equating both the sides, we get
A – B = 30 o …(2)
On Adding Eq. (1) and (2), we get
2A = 120 o
⇒ A = 60 o
Now, Putting the value of A in Eq.(1), we get
60 o + B =90 o
⇒ B = 30 o
Hence, A = 60 o and B = 30 o
If sin (A + B) = 1 and cos (A – B) = 1, find A and B.
Given : sin (A+B) =1
⇒ Sin(A+B) = sin (90 o) [∵ sin (90 o) =1]
On equating both the sides, we get
A + B = 90 o …(1)
And cos (A – B) = 1
⇒ cos(A – B) = cos (0 o) [∵ cos(0 o) = 1]
On equating both the sides, we get
A – B = 0 o …(2)
On Adding Eq. (1) and (2), we get
2A = 90 o
⇒ A = 45 o
Now, Putting the value of A in Eq.(1), we get
45 o + B =90 o
⇒ B = 45 o
Hence, A = 45 o and B = 45 o
If sin (A + B) = cos (A – B) = , fins A and B.
Given :
⇒ Sin(A+B) = sin (60 o)
On equating both the sides, we get
A + B = 60 o …(1)
And
⇒ cos(A – B) = cos (30 o)
On equating both the sides, we get
A – B = 30 o …(2)
On Adding Eq. (1) and (2), we get
2A = 90 o
⇒ A = 45 o
Now, Putting the value of A in Eq.(1), we get
45 o + B =60 o
⇒ B = 15 o
Hence, A = 45 o and B = 15 o
If sin (A – B) = 1/2, cos(A + B) = 1/2; 0o<A+B<90o; A > B, find A and B.
Given :
⇒ Sin(A-B) = sin (30 o)
On equating both the sides, we get
A - B = 30 o …(1)
And
⇒ cos(A + B) = cos (60 o)
On equating both the sides, we get
A + B = 60 o …(2)
On Adding Eq. (1) and (2), we get
2A = 90 o
⇒ A = 45 o
Now, Putting the value of A in Eq.(2), we get
45 o + B =60 o
⇒ B = 15 o
Hence, A = 45 o and B = 15 o
Show by an example that
cos A – cos B ≠ cos (A – B)
Let A = 60o and B = 30o, then
L.H.S.
R. H. S.
L.H.S. R.H.S
Show by an example that
cos C + cos D ≠ cos (C + D)
Let C = 60o and D = 30o, then
L.H.S. = cos C + cos D = cos 60o + cos 30o
R. H. S. = cos (C+D) = cos (60o + 30o) = cos 90o= 0
L.H.S. R.H.S
Show by an example that
sin A + sin B ≠ sin (A + B)
Let A = 60o and B = 30o, then
L.H.S. = sin A + sin B = sin 60o + sin 30o
R. H. S. = sin (A + B) = sin (60o + 30o) = sin 90o =1
∴ L.H.S. R.H.S
Show by an example that
sin A – sin B ≠ sin (A – B)
Let A = 60o and B = 30o, then
L.H.S. = sin A - sin B = sin 60o - sin 30o
R. H. S. = sin (A - B) = sin (60o - 30o) = sin 30o
∴ L.H.S. R.H.S
In a right hypotenuse AC = 10 cm and ∠A = 60°, then find the length of the remaining sides.
Given: ∠A = 60o and AC = 10cm
Now,
Now, we know that
⇒ BC = 5√3 cm
In right angled ∆ABC , we have
⇒ (AB)2 + (BC)2 =(AC)2 [by using Pythagoras theorem]
⇒ (AB)2 + (5√3)2 = (10)2
⇒ (AB)2 +(25×3) =100
⇒ (AB)2 +75 = 100
⇒ (AB)2 = 100 – 75
⇒ (AB)2 = 25
⇒ AB =√25
⇒ AB = ±5
⇒ AB = 5cm [taking positive square root since, side cannot be negative]
∴ Length of the side AB = 5cm and BC =5√3 cm
In a rectangle ABCD, BD : BC = 2 : √3, then find ∠BDC in degrees.
Given BD: BC = 2 : √3
We have to find the ∠BDC
We know that,
⇒ sin θ = sin 60o
⇒ θ = 60o
Express the following as trigonometric ratio of complementary angle of θ.
(i) cos θ (ii) sec θ
(iii) cot θ (iv) cosec θ
(v) tan θ
(i) We know that
⇒ cosθ = sin (90° - θ)
(ii) We know that
(iii) We know that
(iv) We know that
(v) We know that
Express the following as trigonometric ratio of complementary angle of 90o- θ.
(i) tan (90o- θ)
(ii) cos (90o- θ)
(i) We know that,
[∵ sin 90° = 1 and cos 90° = 0]
⇒ tan (90° - θ ) = cot θ
(ii) We know that.
Cos(A - B) = cos A cos B + sin A sin B
⇒ cos (90o- θ) = cos 90° cos θ + sin 90° sin θ
⇒ cos (90o- θ) = (0) cos θ + (1) sin θ
⇒ cos (90o- θ) = sin θ
Fill up the blanks by an angle between 0oand 90o:
(i) sin 70o = cos(…) (ii) sin 35o = cos(…)
(iii) cos 48o=sin (…) (iv) cos 70o = sin (…)
(v) cos 50o = sin (…) (vi) sec 32o=cosec(…)
(i) We know that
Sin θ = cos (90° - θ)
Here, θ = 70°
⇒ sin 70° = cos(90° -70°)
⇒ sin 70° = cos 20°
(ii) We know that
Sin θ = cos (90° - θ)
Here, θ = 35°
⇒ sin 35° = cos(90° -35°)
⇒ sin 35° = cos 55°
(iii) cos θ = sin (90° - θ)
Here, θ = 48°
⇒ cos 48° = sin (90° - 48°)
⇒ cos 48° = sin 42°
(iv) cos θ = sin (90° - θ)
Here, θ = 70°
⇒ cos 70° = sin (90° - 70°)
⇒ cos 70° = sin 20°
(v) cos θ = sin (90° - θ)
Here, θ = 50°
⇒ cos 50° = sin (90° - 50°)
⇒ cos 50° = sin 40°
(vi) sec θ = cosec (90°-θ)
Here, θ = 32°
⇒ sec 32° = cosec(90° – 32°)
⇒ sec 32° = cosec 58°
If A+B=90o, then fill up the blanks with suitable trigonometric ratio of complementary angle of A or B.
(i) sin A =…. (ii) cos B =…
(iii) sec A =… (iv) tan B =…
(v) cosec B =… (vi) cot A=…
(i) Here, A+B = 90°
⇒ A = 90° - B
Multiplying both sides by Sin, we get
Sin A = Sin (90° - B)
⇒ sin A = Cos B [∵ cos θ = sin (90° - θ)]
(ii) Here, A+B = 90°
⇒ B = 90° - A
Multiplying both sides by cos, we get
Cos B = cos (90° - A)
⇒ cos B = sin A [∵ Sin θ = cos (90° - θ)]
(iii) Here, A+B = 90°
⇒ A = 90° - B
Multiplying both sides by sec, we get
Sec A = Sec (90° - B)
⇒ sec A = Cosec B [∵ cosec θ = sec (90° - θ)]
(iv) Here, A+B = 90°
⇒ B = 90° - A
Multiplying both sides by tan, we get
tan B = tan (90° - A)
⇒ tan B = cot A [∵ cot θ = tan (90° - θ)]
(v) Here, A+B = 90°
⇒ B = 90° - A
Multiplying both sides by cosec, we get
Cosec B = cosec (90° - A)
⇒ cosec B = sec A [∵ sec θ = cosec (90° - θ)]
(vi) Here, A+B = 90°
⇒ A = 90° - B
Multiplying both sides by Sin, we get
cotA = cot (90° - B)
⇒ cot A = tan B [∵ tan θ = cot (90° - θ)]
If sin 37o=a, then express cos 53o in terms of a.
Given sin 37° = a
We know that sin θ = cos (90° - θ)
Here, θ = 37°
⇒ cos (90° - 37°) = a
⇒ cos 53° = a
If cos 47o=a, then express sin 43o in terms of a.
Given cos 47° = a
We know that cos θ = sin (90° - θ)
Here, θ = 47°
⇒ sin (90° - 47°) = a
⇒ sin 43° = a
If sin 52o=a, then express sin 38o in terms of a.
Given sin 52° = a
We know that sin θ = cos (90° - θ)
Here, θ = 52°
⇒ cos (90° - 52°) = a
⇒ cos 38° = a
If sin 56o=x, then express sin 34o in terms of x.
Given sin 56° = x
We know that sin θ = cos (90° - θ)
Here, θ = 56°
⇒ cos (90° - 56°) = x
⇒ cos 34° = x
Find the value of
(i) (ii)
(iii) (iv)
(v) (vi)
(vii) (viii)
(ix) sin 54° – cos 36° (x)
(xi) cosec 31° – sec 59° (xii)
(xiii)
(i) [∵ cos θ = sin (90° - θ)]
(ii) [∵ cos θ = sin (90° - θ)]
(iii) [∵ Sin θ = cos (90° - θ)]
(iv) [∵ Sin θ = cos (90° - θ)]
(v) [∵ Sin θ = cos (90° - θ)]
(vi) [∵ Sin θ = cos (90° - θ)]
(vii) [∵ cos θ = sin (90° - θ)]
(viii) [∵ cos θ = sin (90° - θ)]
(ix) sin 54° - sin(90° - 36°) [∵ cos θ = sin (90° - θ)]
⇒ sin 54° - sin 54°
⇒ 0
(x) [∵ tan θ = cot (90° - θ)]
(xi) cosec 31° - cosec(90° - 59°) [∵ sec θ = cosec (90° - θ)]
⇒ cosec 31° - cosec 31°
⇒ 0
(xii) [∵ Sin θ = cos (90° - θ)]
(xiii) [∵ tan θ = cot (90° - θ)]
Fill up the blanks :
(i) If sin 50o=0.7660, then cos 40o=……
(ii) If cos 44o = 0.7193, then sin 46o=…..
(iii) sin 50o+cos 40o = 2 sin (………)
(iv) Value of is ………
(i) Given: sin 50o=0.7660
We know that
Sin θ = cos (90° - θ)
⇒ cos (90° - 50°) = 0.7660
⇒ cos 40° = 0.7660
(ii) Given: cos 44° = 0.7193
We know that,
cos θ = sin (90° - θ)
⇒ sin (90° - 44°) = 0.7193
⇒ sin 46° = 0.7193
(iii) LHS = sin 50° + cos 40°
⇒ sin 50° + sin (90° - 40°) [∵ cos θ = sin (90° - θ)]
⇒ sin 50° + sin 50°
⇒ 2sin 50°
(iii) [∵ Sin θ = cos (90° - θ)]
If A + B = 90o, then express cos B in terms of simplest trigonometric ratio of A.
Given: A+B =90°
⇒ B = 90° - A
Multiplying both side by cos, we get
= cos B = Cos (90° - A)
⇒ cos B = sin A [∵ Sin θ = cos (90° - θ)]
If X + Y = 90o, then express cos X in terms of simplest trigonometric ratio of Y.
Given: X+Y =90°
⇒ X= 90° - Y
Multiplying both side by cos, we get
= cos X = Cos (90° - Y)
⇒ cos X = sin Y [∵ Sin θ = cos (90° - θ)]
If A + B = 90o, sin A = a, sin B = b, then prove that
(a) a2 + b2 = 1
(b)
(a) LHS = a2 +b2
= (sin A)2 + (sin B)2
= sin2 A + sin2 B
= sin2 A + sin2 (90° - A) [∵ cos θ = sin (90° - θ)]
= sin2 A + cos2 A
= 1 [∵ sin2 θ + cos2 θ = 1]
=RHS
Hence Proved
(b) LHS = tan A
Now, taking RHS
⇒
{given, A +B = 90°)
[∵ cos θ = sin (90° - θ)]
⇒ tan A
=LHS
∴ LHS = RHS
Hence Proved
Show that sin(50° + θ) – cos (40° – θ) = 0.
LHS = sin (50° + θ) – cos (40° - θ)
We know that,
Sin A = cos (90° - A)
Here, A = 50° + θ
⇒ cos {90° -( 50° + θ)} – cos (40° - θ)
⇒ cos (40° - θ) – cos (40° - θ)
= 0 = RHS
Hence Proved
Prove that
Taking LHS,
[∵ cos θ = sin (90° - θ) and Sin θ = cos (90° - θ)]
⇒ 1+ 1
= 2 = RHS
Hence Proved
In a ∆ABC prove that
In ∆ABC,
Sum of angles of a triangle = 180°
A + B + C = 180°
⇒ B + C = 180° - A
…(1)
Taking LHS
(from eq (1))
[∵ sin (90° - θ) = cos θ]
=RHS
Hence Proved
In a ∆ABC prove that
In ∆ABC,
Sum of angles of a triangle = 180°
A + B + C = 180°
⇒ B + C = 180° - A
…(2)
Taking LHS
(from eq (2))
[∵ tan (90° - θ) = cot θ]
=RHS
Hence Proved
In a ∆ABC prove that
In ∆ABC,
Sum of angles of a triangle = 180°
A + B + C = 180°
⇒ A + B = 180° - C
…(3)
Taking LHS
(from eq (3))
[∵ cos (90° - θ) = sin θ]
=RHS
Hence Proved
If sin 3A = cos(A – 26o), where 3A is an acute angle, find the value of A.
sin 3A = cos (A-26°) …(i)
We know that
Sin θ = cos (90° - θ)
So, Eq. (i) become
Cos (90° - 3A) = cos (A -26°)
On Equating both the sides, we get
90° - 3A = A – 26°
⇒ -3A - A = -26° -90°
⇒ -4A = -116°
⇒ A = 29°
Find θ if cos(2 θ +54o)= sin θ, where (2θ +54o) is an acute angle.
cos(2 θ +54o)= sin θ …(i)
We know that
Sin θ = cos (90° - θ)
So, Eq. (i) become
cos(2 θ +54o) = cos( 90° - θ)
On Equating both the sides, we get
2θ + 54° = 90° - θ
⇒ 2θ + θ = 90° - 54°
⇒ 3θ = 36°
⇒ θ = 12°
If tan 3 θ =cot (θ +18o), where 3 θ and θ +18o are acute angles, find the value of θ.
tan 3θ = cot (θ + 18°) …(i)
We know that
tan θ = cot (90° - θ)
So, Eq. (i) become
Cot (90° - 3θ) = cot (θ + 18°)
On Equating both the sides, we get
90° - 3θ = θ + 18°
⇒ -3θ - θ = 18° -90°
⇒ -4θ = -72°
⇒ θ = 18°
If sec 5 θ =cosec (θ -36o), where 5 θ is an acute angle, find the value of θ.
sec 5θ = cosec (θ-36°) …(i)
We know that
sec θ = cosec (90° - θ)
So, Eq. (i) become
Cosec (90° - 5θ) = cosec (θ -36°)
On Equating both the sides, we get
90° - 5θ = θ -36°
⇒ -5θ - θ = -36° -90°
⇒ -6θ = -126°
⇒ θ = 21°
Prove that :
sin 70o. sec 20o=1
Taking LHS
sin 70° sec 20°
[∵ cos θ = sin (90° - θ)]
= 1 = RHS
Hence Proved
Prove that :
sin (90o- θ) tan θ=sin θ
Taking LHS
Sin(90° - θ) tanθ [∵ cos θ = sin (90° - θ)]
⇒ cos θ tan θ
[∵ tan θ ]
= sin θ = RHS
Hence Proved
Prove that :
tan 63o. tan 27o=1
Taking LHS
Tan 63° tan 27°
⇒ tan 63° cot (90° - 27°) [∵ tan θ = cot (90° - θ)]
⇒ tan 63° cot 63°
= 1 =RHS
Hence Proved
Prove that :
Taking LHS
=
= cos2 θ – 1
= - sin2 θ [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved
Prove that :
sin 55o. cos 48o=cos35o. sin 42o
Taking LHS = sin 55 ° cos 48°
We know that
cos θ = sin (90° - θ)
Here, θ = 48°
⇒ sin 55° sin (90° - 48°)
⇒ sin 55° sin 42°
We also know that
Sin θ = cos (90° - θ)
Here, θ = 55°
⇒ cos (90° - 55°) sin 42°
⇒ cos 35° sin 42° = RHS
Hence Proved
Prove that :
sin2 25o+sin2 65° = cos2 63°+cos2 39o
Taking LHS = sin 25o+sin65o
We know that
Sin θ = cos (90° - θ)
Here, θ = 25°
⇒ cos2 (90° - 25°)+ sin2 65°
⇒ cos2 65° + sin2 65°
= 1 [∵ cos2 θ + sin2 θ = 1]
Now, RHS = cos2 63o+cos2 39o
We know that
cos θ = sin (90° - θ)
Here, θ = 39°
⇒ cos2 63° + sin2 (90° - 39°)
⇒ cos2 63°+ sin2 63°
=1 [∵ cos2 θ + sin2 θ = 1]
LHS = RHS
Hence Proved
Prove that :
sin 54o+cos67o= sin23o+cos36o
Taking LHS = sin 54o+cos67o
We know that
cos θ = sin (90° - θ)
Here, θ = 67°
⇒ sin 54°+ sin (90° - 67°)
⇒ sin 54°+ sin 23°
We also know that
Sin θ = cos (90° - θ)
Here, θ = 54°
⇒ cos (90° - 54°)+ sin 23°
⇒ cos 36°+ sin 23° = RHS
Hence Proved
Prove that :
cos 27+ sin51o = sin63o+cos 39o
Taking LHS = cos 27+ sin51o
We know that
cos θ = sin (90° - θ)
Here, θ = 27°
⇒ sin (90° - 27°)+ sin 51°
⇒ sin 63°+ sin 51°
We also know that
Sin θ = cos (90° - θ)
Here, θ = 51°
⇒ sin 63°+ cos (90° - 51°)
⇒ sin 63°+ cos 39° = RHS
Hence Proved
Prove that :
sin240o+sin250o=1
Taking LHS= sin240o+sin250o
⇒ cos2 (90° - 40°) + sin2 50° [∵ Sin θ = cos (90° - θ)]
⇒ cos2 50° + sin2 50°
= 1 =RHS [∵ cos2 θ + sin2 θ = 1]
Hence Proved
Prove that :
sin229o + sin261o=1
Taking LHS= sin229o + sin261o
⇒ cos2 (90° - 29°) + sin2 61° [∵ Sin θ = cos (90° - θ)]
⇒ cos2 61° + sin2 61°
= 1 =RHS [∵ cos2 θ + sin2 θ = 1]
Hence Proved
Prove that :
sin θ .cos (90° - θ) + cos θ sin (90° - θ).
Taking LHS = sin θ cos (90° - θ) + cos θ sin (90° - θ)
⇒ sin θ × sin θ + cos θ × cos θ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]
⇒ cos2 θ + sin2 θ [∵ cos2 θ + sin2 θ = 1]
= 1 = RHS
Hence Proved
Prove that :
cos θ . cos(90° – θ) + sin θ sin (90° – θ) = 0
Taking LHS = cos θ cos ( 90° - θ) + sin θ sin (90° - θ)
⇒ cos θ × sin θ – sinθ × cos θ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]
= 0 = RHS
Hence Proved
Prove that :
sin 42°. cos 48° + cos 42° . sin 48° = 1
Taking LHS
= sin 42° cos 48° + cos 42° sin 48°
= cos (90° - 42°) cos 48° + sin (90° - 42°) sin 48°
[∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]
= cos 48° cos 48° + sin 48° sin 48°
= cos2 48° + sin2 48°
= 1 [∵ cos2 θ + sin2 θ = 1]
=LHS=RHS
Hence Proved
Prove that :
Taking LHS
[∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]
= 1 + 1
= 2 = RHS
Hence Proved
Prove that :
tan 27° tan 45° tan 63°
Taking LHS
= tan 27° tan 45° tan 63°
=tan (90° - 27°) tan 45° tan 63° [∵ tan θ = cot (90° - θ)]
=cot 63° tan 45° tan 63°
= tan 45° [∵ tan 45° =1]
=1 =RHS
Hence Proved
Prove that :
tan 9°. tan 27°. tan 45°. tan 63°. tan 81° = 1
Taking LHS
= tan 9° tan 27° tan 45° tan 63° tan 81°
=cot(90° - 9°) tan (90° - 27°) tan 45° tan 63° tan 81° [∵ tan θ = cot (90° - θ)]
=cot 81° cot 63° tan 45° tan 63° tan 81°
= tan 45° [∵ tan 45° =1]
=1 =RHS
Hence Proved
Prove that :
sin 9°. sin 27°. sin 63°. sin 81°
= cos9°.cos27°.cos63°.cos81°
Taking LHS
= sin 9° sin 27° sin 63° sin 81°
= cos (90° - 9°) cos (90° - 27°) cos (90° – 63°) cos (90°- 81°)
= cos 81° cos 63° cos 27° cos 9°
Or cos 9° cos 27° cos 63° cos 81° = RHS
Hence Proved
Prove that :
Taking LHS
= tan 7° tan 23° tan 60° tan 67° tan 83°
=cot(90° - 7°) tan (90° - 23°) tan 60° tan 67° tan 83° [∵ tan θ = cot (90° - θ)]
=cot 83° cot 67° tan 60° tan 67° tan 83°
= tan 60° [∵ tan 60° =√3]
=√3 =RHS
Prove that :
Taking LHS
= tan 15° tan 25° tan 60° tan 65° tan 75°
=cot(90° - 15°) tan (90° - 25°) tan 60° tan 65° tan 75° [∵ tan θ = cot (90° - θ)]
=cot 75° cot 65° tan 60° tan 65° tan 75°
= tan 60° [∵ tan 60° =√3]
=√3 =RHS
Find the value off the following:
[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]
= 1 + 1 – 4
= -2
Find the value off the following:
[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]
[∵ cos2 θ + sin2 θ = 1]
= 1 + 1
=2
Find the value off the following:
[∵ tan θ = cot (90° - θ) , sec θ = cosec (90° - θ) and cos θ = sin (90° - θ)]
= 1 + 1
= 2
Find the value off the following:
cosec (65° + θ) – sec (25° - θ) – tan(55° - θ) + cot(35° +θ)
cosec (65° + θ) – sec (25° - θ) – tan(55° - θ) + cot(35° +θ)
= sec {90°-(65°+θ)} – sec (25° - θ) – tan(55° - θ) + tan {90°-(35° +θ)}
[∵ cosec θ = sec (90° - θ) and cot θ = tan (90° - θ)]
= sec ( 90° - 65°-θ) – sec (25° - θ) – tan(55° - θ) + tan (90°- 35° - θ)
= sec (25° - θ) - sec (25° - θ) – tan(55° - θ) + tan (55° - θ)
= 0
Find the value off the following:
= 1 + 1 – 1
= 1
Find the value off the following:
[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]
= 1
Find the value off the following:
cosec (65° + θ) – sec (25° - θ)
cosec (65° + θ) – sec (25° - θ)
= sec {90°-(65°+θ)} – sec (25° - θ)
[∵ cosec θ = sec (90° - θ)]
= sec ( 90° - 65°-θ) – sec (25° - θ)
= sec (25° - θ) - sec (25° - θ)
= 0
Find the value off the following:
cos (60° + θ) – sin (30° - θ)
cos (60° + θ) – sin (30° - θ)
= sin {90°-(60°+θ)} – sin (30° - θ) [∵ cos θ = sin (90° - θ)]
= sin ( 90° - 60°-θ) – sin (30° - θ)
= sin (30° - θ) - sin (30° - θ)
= 0
Find the value off the following:
sec 70°. sin 20° - cos 20°. cosec 70°
sec 70° sin 20° - cos 20° cosec 70°
= cosec (90°-70°) cos (90° - 20°)- cos 20° cosec 70°
[∵ sec θ = cosec (90° - θ) and Sin θ = cos (90° - θ)]
= cosec 70° cos 20° - cos 20° cosec 70°
=0
Find the value off the following:
(sin 72° + cos 18°)( sin 72° - cos 18°)
(sin 72° + cos 18°)( sin 72° - cos 18°)
Using the identity , (a-b)(a+b) = a2 – b2
= (sin 72°)2 - (cos 18°)2
= {cos(90° - 72°)}2 - (cos 18°)2 [∵ Sin θ = cos (90° - θ)]
=(cos 18°)2 - (cos 18°)2
= 0
Find the value off the following:
[∵ cos θ = sin (90° - θ)]
= 1 + 1 - 1
= 1
Find the value off the following:
= 1 + 1
= 2
Find the value off the following:
(sin 50° + θ)- cos (40° - θ) + tan 1°. tan 10° tan 20°. tan 70°. tan 80°. tan 89°
(sin 50° + θ)- cos (40° -θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89°
= cos {90° -(50° + θ)} - cos (40° -θ)+ cot(90° - 1°) tan (90° - 10°) cot(90° - 20°) tan 70° tan 80° tan 89° [∵ Sin θ = cos (90° - θ) & tan θ = cot (90° - θ)]
= cos (40° -θ) - cos (40° -θ) + cot89° cot80° cot70° tan 70° tan 80° tan 89°
= 1
Find the value off the following:
[∵ cot θ = tan (90° - θ), cos θ = sin (90° - θ) and Sin θ = cos (90° - θ)]
[∵ 1+tan2 θ =sec2 θ and cos2 θ +sin2θ = 1]
= 1 + 1
= 2
Find the value off the following:
[∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ)]
=
= 0 + 1
= 1
[∵ cos θ = sin (90° - θ) and tan θ = cot (90° - θ)]
= 1 + 1 [∵ tan 45° = 1]
= 2
Find the value off the following:
[∵ cos θ = sin (90° - θ)]
= 1 + 1
= 2
Evaluate the following
[∵ cos θ = sin (90° - θ)]
= 3 + 2
= 5
Evaluate the following
[∵ tan θ = cot (90° - θ)]
= 1 +1 – 2
= 0
Evaluate the following
[∵ cos θ = sin (90° - θ) and sec θ = cosec (90° - θ)]
= 1 + 1
= 2
Evaluate the following
cos38° cos52° – sin38° sin 52°
We know that
cos θ = sin (90° - θ)
=sin (90° - 38°) sin (90° -52°) – sin 38° sin 52°
= sin 52° sin 38°– sin 38° sin 52°
=0
Evaluate the following
sec41° sin49° + cos49° cosec 41°
We know that
sec θ = cosec (90° - θ) and cos θ = sin (90° - θ)
Cosec (90° – 41°) sin 49° + sin (90° – 49°) cosec 41°
= cosec 49° sin 49° + sin 41° cosec 41°
= 1+ 1
= 2
Fill in the blanks
(i) sin2 θ cosec2 θ = ……..
(ii) 1 + tan2 θ = ……
(iii) Reciprocal sin θ. cot θ = ……
(iv) 1–.......= cos2θ
(v)
(vi)
(vii) cos θ is reciprocal of .........
(viii) Reciprocal of sin θ is.........
(ix) Value of sin θ in terms of cos θ is
(x) Value of cos θ in terms of sin θ is
(i) Given: sin2 θ cosec2 θ
= 1
(ii) Given: 1 + tan2 θ
[∵ cos2 θ + sin2 θ = 1]
= sec2 θ
(iii) Given : sin θ cot θ
Firstly, we simplify the given trigonometry
= cos θ
Now, the reciprocal of cos θ is
=sec θ
(iv) Given: 1 – x = cos2θ
Subtracting 1 to both the sides, we get
1 – x –1 = cos2θ – 1
⇒ –x = – sin2θ
⇒ x =sin2 θ
(v)
(vi)
(vii)
(viii)
(ix) We know that
cos2 θ + sin2 θ = 1
⇒ sin2 θ = 1 – cos2 θ
⇒ sin θ = √(1 – cos2 θ)
(x) We know that
cos2 θ + sin2 θ = 1
⇒ cos 2 θ = 1 – sin2 θ
⇒ cos θ = √(1 – sin2 θ)
If sin θ= p and cos θ = q, what is the relation between p and q ?
We know that,
cos2 θ + sin2 θ = 1 …(i)
Given : sin θ = p and cos θ = q
Putting the values of sin θ and cos θ in eq. (i), we get
(q)2 + (p)2 =1
⇒ p2 + q2 =1
If cos A = x, express sin A in terms of x
We know that
cos2 θ + sin2 θ = 1
⇒ sin2 θ = 1 – cos2 θ
⇒ sin θ = √(1 – cos2 θ)
And Given that cos θ = x
⇒ sin θ = √(1– x2)
If x cos θ = 1 and y sin θ = 1 find the value of tan θ.
Given x cosθ = 1 and y sinθ = 1
Now, we know that
Putting the value of sin θ and cos θ, we get
If cos40o = p, then write the value of sin 40o in terms of p.
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 40° + sin2 40° = 1
⇒ sin2 40° = 1 – cos2 40°
⇒ sin 40° = √(1 – cos2 40°)
And Given that cos 40° = p
⇒ sin 40° = √(1– p2)
If sin 77° = x, then write the value of cos 77o in terms of x.
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 77° + sin2 77° = 1
⇒ cos 2 77° = 1 – sin2 77°
⇒ cos 77° = √(1 – sin2 77°)
And Given that sin 77° = x
⇒ cos 77° = √(1 – x2 )
If cos55° = x2, then write the value of sin 55o in terms of x.
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 55° + sin2 55° = 1
⇒ sin2 55° = 1 – cos2 55°
⇒ sin 55° = √(1 – cos2 55°)
And Given that cos 55° = x2
⇒ sin 55° = √{1– (x2)2}
⇒ sin 55° = √(1 – x4)
If, sin 50° = α then write the value of cos 50° in terms of α.
We know that
cos2 θ + sin2 θ = 1
⇒ cos2 50° + sin2 50° = 1
⇒ cos 2 50° = 1 – sin2 50°
⇒ cos 50° = √(1 – sin2 50°)
And Given that sin 50° = a
⇒ cos 50° = √(1 – a2 )
If x cos A = 1 and tan A = y, then what is the value of x2 – y2.
Given x cos A = 1 and tan A =y
and
To find: x2 – y2
Putting tha values of x and y , we get
[∵ cos2 θ + sin2 θ = 1]
= 1
Prove the followings identities:
(1 – sin θ)(1 + sin θ) = cso2 θ
Taking LHS = (1 – sinθ)(1+ sinθ)
Using identity , (a + b) (a – b) = (a2 – b2) , we get
= (1)2 – (sinθ)2
= 1 – sin2 θ
= cos2 θ [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved
Prove the followings identities:
(1 + cos θ)(1 – cos θ) = sin2θ
Taking LHS =(1 – cosθ)(1+ cosθ)
Using identity , (a + b) (a – b) = (a2 – b2) , we get
= (1)2 – (cosθ)2
= 1 – cos2 θ
= sin2 θ [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved
Prove the followings identities:
Taking LHS
[Using identity , (a + b) (a – b) = (a2 – b2)]
[∵ cos2 θ + sin2 θ = 1]
= tan2 θ
= RHS
Hence Proved
Prove the followings identities:
Taking LHS
Multiplying and divide by the conjugate of sec θ + tan θ
[Using identity , (a + b) (a – b) = (a2 – b2)]
= sec θ – tan θ [∵ 1+ tan2 θ = sec2 θ ]
= RHS
Hence Proved
Prove the following identities :
sinθ. cotθ = cos θ
Taking LHS = sin θ cot θ
= cos θ
=RHS
Hence Proved
Prove the following identities :
sin2 θ(1+ cot2 θ) = 1
Taking LHS = sin2 θ(1+ cot2 θ)
= sin2 θ (cosec2 θ) [∵ cot2 θ +1= cosec2 θ ]
= 1
=RHS
Hence Proved
Prove the following identities :
cos2 A (tan2 A+1) = 1
Taking LHS = cos2 A (tan2 A+1)
= cos2 θ (sec2 θ) [∵ 1+ tan2 θ = sec2 θ ]
= 1
=RHS
Hence Proved
Prove the following identities :
tan4θ + tan2θ = sec4θ – sec2θ
Taking LHS = tan4 θ + tan2 θ
= (tan2 θ)2 + tan2 θ
= ( sec2 θ – 1)2 + (sec2 θ – 1) [∵ 1+ tan2 θ = sec2 θ ]
= sec4 θ + 1 – 2 sec2 θ + sec2 θ – 1 [∵ (a – b)2 = (a2 + b2 – 2ab)]
= sec4 θ – sec2 θ
=RHS
Hence Proved
Prove the following identities :
Taking LHS
[∵ 1+ tan2 θ = sec2 θ]
= tan θ
=RHS
Hence Proved
Prove the following identities :
Taking LHS
[∵ cos2 θ + sin2 θ = 1]
= sec2θ
Now, RHS
= sec2θ
∴ LHS = RHS
Hence Proved
Prove the following identities :
Taking LHS
= 3 sec2 θ – 4 tan2 θ
We know that,
1+ tan2 θ = sec2 θ
= 3(1+ tan2 θ) – 4 tan2 θ
= 3 + 3 tan2 θ – 4 tan2 θ
= 3 – tan2 θ
=RHS
Hence Proved
Prove the following identities :
(1+ tan2 θ) cos θ. sin θ = tan θ
Taking LHS = (1+ tan2 θ) cos θ sin θ
= (sec2 θ) cos θ sin θ [∵ 1+ tan2 θ = sec2 θ]
= tan θ
=RHS
Hence Proved
Prove the following identities :
sin2θ – cos2 ϕ = sin2ϕ – cos2θ
Taking LHS = sin2 θ – cos2 φ
=( 1 – cos2 θ) – (1 – sin2 φ) [∵ cos2 θ + sin2 θ = 1] & [∵ cos2 φ + sin2 φ = 1]
= 1 – cos2 θ – 1 + sin2 φ
= sin2 φ – cos2 θ
=RHS
Hence Proved
Prove the following identities :
Taking LHS
= tan2 θ
=RHS
Hence Proved
Prove the following identities :
(1 – cosθ)(1+ cosθ)(1+ cot2 θ) = 1
Taking LHS = (1 – cosθ)(1+ cosθ)(1+ cot2 θ)
Using identity , (a + b) (a – b) = (a2 – b2) in first two terms , we get
= (1)2 – (cosθ)2 (cosec2 θ) [∵ cot2 θ +1= cosec2 θ]
= (1 – cos2 θ) (cosec2 θ)
= (sin2 θ) (cosec2 θ) [∵ cos2 θ + sin2 θ = 1]
=1
= RHS
Hence Proved
Prove the following identities :
Taking LHS
[∵ (a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)]
[∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove the following identities :
Taking LHS
Multiplying and divide by the conjugate of (1 – sinθ), we get
Now, multiply and divide by conjugate of 1 – cos θ, we get
=RHS
Hence Proved
Prove the following identities :
(sin θ – cos θ)2 = 1 – 2 sinθ . cos θ
Taking LHS = (sin θ – cos θ)2
Using the identity,(a – b)2 = (a2 + b2 – 2ab)
= sin2 θ + cos2 θ – 2sin θ cos θ
= 1 – 2sin θ cos θ [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove the following identities :
(sin θ + cos θ)2 + (sin θ – cos θ)2 = 2
Taking LHS = (sin θ + cos θ)2 + (sin θ – cos θ)2
Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)
= sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ – 2sin θ cos θ
= 1 +1 [∵ cos2 θ + sin2 θ = 1]
= 2
=RHS
Hence Proved
Prove the following identities :
(asin θ + bcos θ)2 + (acos θ – bsin θ)2 = a2 + b2
Taking LHS = (asin θ + bcos θ)2 + (acos θ – bsin θ )2
Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)
= a2 sin2 θ + b2 cos2 θ + 2 ab sin θ cos θ + a2 cos2 θ + b2 sin2 θ – 2 ab sin θ cos θ
= a2 sin2 θ+ a2 cos2 θ + b2 sin2 θ + b2 cos2 θ
= a2 (sin2 θ + cos2 θ) + b2 (sin2 θ + cos2 θ)
= a2 + b2 [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove the following identities :
cos4 A + sin4 A + 2 sin2 A. cos2 A = 1
Taking LHS = cos4 A + sin4 A + 2 sin2 A cos2 A
Using the identity,(a + b)2 = (a2 + b2 + 2ab)
Here, a = cos2 A and b = sin2 A
= ( cos2 A + sin2 A) [∵ cos2 θ + sin2 θ = 1]
= 1
Prove the following identities :
sin4 A – cos4 A = 2 sin2 A – 1 = 1 – 2 cos2 A = sin2 A – cos2 A
Given:
Taking I term
= sin4 A – cos4 A → I term
= (sin2 A)2 – (cos2 A)2
= (sin2 A – cos2 A)(sin2 A+ cos2 A )
[∵ (a2 – b2) = (a + b) (a – b)]
= (sin2 A – cos2 A)(1) [∵ cos2 θ + sin2 θ = 1]
= (sin2 A – cos2 A) …(i) → IV term
From Eq. (i)
= {sin2 A – (1 – sin2 A)} [∵ cos2 θ + sin2 θ = 1]
= sin2 A – 1 + sin2 A
= 2 sin2 A – 1 → II term
Again, From Eq. (i)
= {(1 – cos2 A) – cos2 A } [∵ cos2 θ + sin2 θ = 1]
=1 – 2 cos2 A → III term
Hence, I = II = III = IV
Hence Proved
Prove the following identities :
cos4 θ – sin4 θ = cos2 θ – sin2 θ = 2 cos2 θ – 1
Given:
Taking I term
= cos4 θ – sin4 θ → I term
= (cos2 θ)2 – (sin2 θ)2
= (cos2 θ – sin2 θ)(cos2 θ+ sin2 θ )
[∵ (a2 – b2) = (a + b) (a – b)]
= (cos2 θ – sin2 θ) (1) [∵ cos2 θ + sin2 θ = 1]
= (cos2 θ – sin2 θ) …(i) → II term
From Eq. (i)
= {cos2 θ – (1 – cos2 θ)} [∵ cos2 θ + sin2 θ = 1]
= 2 cos2 θ – 1 → III term
Hence, I = II = III
Hence Proved
Prove the following identities :
2 cos2 θ – cos4 θ + sin4 θ = 1
Taking LHS = 2 cos2 θ – cos4 θ + sin4 θ
= 2 cos2 θ – (cos4 θ – sin4 θ)
= 2 cos2 θ – [(cos2 θ)2 – (sin2 θ)2]
Using identity, (a2 – b2) = (a + b) (a – b)
= 2 cos2 θ – [(cos2 θ – sin2 θ)(cos2 θ+ sin2 θ )]
= 2 cos2 θ – [(cos2 θ – sin2 θ)(1)] [∵ cos2 θ + sin2 θ = 1]
=2 cos2 θ – cos2 θ + sin2 θ
= cos2 θ + sin2 θ
= 1 [∵ cos2 θ + sin2 θ = 1]
= RHS
Hence Proved
Prove the following identities :
1 – 2 cos2 θ + cos4 θ = sin4θ
Taking LHS = 1 – 2 cos2 θ + cos4 θ
We know that,
cos2 θ + sin2 θ = 1
= 1– 2 cos2 θ + (cos2 θ)2
= 1 – 2 cos2 θ + (1 – sin2 θ)2
= 1 – 2 cos2 θ +1 + sin4 θ – 2sin2θ
= 2 – 2(cos2 θ + sin2θ) + sin4 θ
= 2 – 2(1) + sin4 θ
= sin4 θ
=RHS
Hence Proved
Prove the following identities :
1 – 2 sin2 θ + sin4 θ = cos4θ
Taking LHS = 1 – 2 sin2 θ + sin4 θ
We know that,
cos2 θ + sin2 θ = 1
= 1– 2 sin2 θ + (sin2 θ)2
= 1 – 2 sin2 θ + (1 – cos2 θ)2
= 1 – 2 sin2 θ +1 + cos4 θ – 2cos2θ
= 2 – 2(cos2 θ + sin2θ) + cos4 θ
= 2 – 2(1) + cos4 θ
= cos4 θ
=RHS
Hence Proved
Prove that the following identities :
sec2θ + cosec2θ = sec2θ.cosec2θ
Taking LHS = sec2 θ + cosec2 θ
[∵ cos2 θ + sin2 θ = 1]
= sec2 θ × cosec2 θ
=RHS
Hence Proved
Prove that the following identities :
Taking LHS
[∵ cos2 θ + sin2 θ = 1]
= cosec θ
=RHS
Hence Proved
Prove that the following identities :
cotθ + tan θ = cosec θ . sec θ
Taking LHS = cot θ + tan θ
[∵ cos2 θ + sin2 θ = 1]
= cosec θ sec θ
=RHS
Hence Proved
Prove that the following identities :
Taking LHS
Multiplying and divide by the conjugate of 1 + sin θ , we get
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
[∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove that the following identities :
Taking LHS
Multiplying and divide by the conjugate of 1 + cos θ , we get
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
[∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove that the following identities :
Taking LHS
Multiplying and divide by the conjugate of 1 + cos θ , we get
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
[∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove that the following identities :
Taking LHS
Multiplying and divide by the conjugate of 1 + sin θ , we get
[∵ (a + b) (a – b) = (a2 – b2)]
[∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove that the following identities :
(sin8θ – cos8θ) = (sin2θ – cos2θ)(1 – 2sin2θ .cos2θ)
Taking LHS
= sin8 θ – cos8 θ
= (sin4 θ)2 – (cos4 θ)2
= (sin4 θ – cos4 θ)(sin4 θ+ cos4 θ )
[∵ (a2 – b2) = (a + b) (a – b)]
= {(sin2 θ)2 – (cos2 θ)2}{(sin2 θ)2 + (cos2 θ)2}
= (sin2 θ + cos2 θ) (sin2 θ – cos2 θ) [(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]
[ ∵ (a2 + b2) = (a +b)2 – 2ab]
= (1)[ sin2 θ –cos2 θ][(1) – 2 sin2 θ cos2 θ]
= (sin2 θ – cos2 θ)(1 – 2 sin2 θ cos2 θ)
=RHS
Hence Proved
Prove that the following identities :
2(sin6 θ – cos6 θ) – 3(sin4 θ + cos4 θ ) + (sin2 θ + cos2 θ)
Taking LHS
= 2(sin6 θ – cos6 θ) – 3(sin4 θ+ cos4 θ ) + (sin2 θ + cos2 θ)
= 2[(sin2 θ)3 – (cos2 θ)3 ] – 3[(sin2 θ)2 + (cos2 θ)2 ]+1 [∵ cos2 θ + sin2 θ = 1]
Now, we use these identities, (a3 – b3)= (a + b)3 – 3ab(a+b) and (a2 + b2) = (a +b)2 – 2ab]
= 2[(sin2 θ + cos2 θ)3 – 3sin2θ cos2θ (sin2 θ+ cos2 θ)] –3[(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]+ 1
=2[(1) – 3sin2θ cos2θ (1)] – 3[(1) – 2 sin2 θ cos2 θ] + 1 [∵ cos2 θ + sin2 θ = 1]
=2(1 – 3 sin2 θ cos2 θ )– 3 + 6sin2 θ cos2 θ+ 1
= 2– 6sin2θ cos2θ – 2 + 6sin2 θ cos2 θ
=0
=RHS
Hence Proved
Prove the following identities
Taking LHS
Using the identity, (a2 – b2)= (a + b) (a – b)
= sin A +cos A
=RHS
Hence Proved
Prove the following identities
Taking LHS
[∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove the following identities
Taking LHS
Using the identity, (a2 – b2)= (a + b) (a – b)
[∵ cos2 θ + sin2 θ = 1]
= 2 sec2 θ
=RHS
Hence Proved
Prove the following identities
Taking LHS
[∵ cos2 θ + sin2 θ = 1]
=2 sec θ
=RHS
Hence Proved
Prove the following identities
Taking LHS
Using the identity, (a2 – b2)= (a + b) (a – b)
[∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove the following identities
Taking LHS
Using the identity, (a2 – b2)= (a + b) (a – b)
[∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove the following identities
Taking LHS
Using the identity, (a2 – b2)= (a + b) (a – b)
[∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove the following identities
cot2θ – cos2θ = cot2θ . cos2θ
Taking LHS = cot2 θ – cos2 θ
[∵ cos2 θ + sin2 θ = 1]
= cot2 θ cos2 θ
=RHS
Hence Proved
Prove the following identities
tan2 φ – sin2 φ – tan2 φ . sin2 φ = 0
Taking LHS = tan2 φ – sin2 φ – tan2 φ sin2 φ
[∵ cos2 φ + sin2 φ = 1]
= 0
=RHS
Hence Proved
Prove the following identities
tan2 φ + cot2 φ + 2 = sec2ϕ. cosec2ϕ
Taking LHS = tan2 φ + cot2 φ + 2
[∵ (a + b)2 = (a2 + b2 + 2ab)]
[∵ cos2 φ + sin2 φ = 1]
= sec2 φ cosec2 φ
=RHS
Hence Proved
Prove the following identities
Taking LHS
[∵ cot2 θ – cosec2 θ = 1]
= cot θ + cosec θ
=RHS
Hence Proved
Prove the following identities
Taking LHS
=
[∵ (a3 – b3)= (a – b)(a2 +b2 +ab)]
= tan θ cot θ + 1
=RHS
Hence Proved
Prove the following identities
Taking LHS
Multiplying and divide by the conjugate of 1 + cos θ , we get
[∵ (a – b) (a – b) =(a – b)2 and (a + b) (a – b) = (a2 – b2)]
[∵ cos2 θ + sin2 θ = 1]
= (cosec θ – cot θ)2
= { – (cot θ – cosec θ)}2
= (cot θ – cosec θ)2
=RHS
Hence Proved
Prove the following identities
Taking LHS
[multiplying and divide by conjugate of 1– cosθ]
[∵ cos2 θ + sin2 θ = 1]
=
=RHS
Hence Proved
Prove the following identities
Taking LHS
[multiplying and divide by conjugate of 1– cosθ]
[∵ cos2 θ + sin2 θ = 1]
Multiply and divide by conjugate of 1+ cosθ, we get
=RHS
Hence Proved
Taking LHS
[multiplying and divide by conjugate of 1+sinθ]
[∵ cos2 θ + sin2 θ = 1]
=
= sec θ – tan θ
=RHS
Hence Proved
Prove the following identities
Taking LHS
[multiplying and divide by of 1+ sin θ]
[∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
Prove the following identities
Taking LHS
[multiplying and divide by conjugate of 1– sinθ in 1st term and 1+sinθ in 2nd term]
[∵ cos2 θ + sin2 θ = 1]
=
= 2 sec θ
=RHS
Hence Proved
If secθ + tanθ=m and sec θ – tanθ = n, then prove that
Given : sec+tan=m and sec –tan=n
To Prove : √mn = 1
Taking LHS = √mn
Putting the value of m and n, we get
Using the identity, (a + b) (a – b) = (a2 – b2)
=√(1) [∵ 1+ tan2 θ = sec2 θ]
=±1
=RHS
Hence Proved
If cosθ + sinθ = 1, then prove that cosθ – sin θ = ± 1.
Given: cos +sin=1
On squaring both the sides, we get
(cos θ +sin θ)2 =(1)2
⇒ cos2 θ + sin2 θ + 2sinθ cos θ = 1
⇒ cos2 θ + sin2 θ = cos2 θ + sin2 θ – 2sinθ cos θ
[∵ cos2 θ + sin2 θ = 1]
⇒ cos2 θ + sin2 θ = (cosθ – sinθ)2
[∵ (a – b)2 = (a2 + b2 – 2ab)]
⇒ 1 = (cos θ – sin θ)2
⇒ (cos θ – sin θ) = ±1
Hence Proved
If sinθ + sin2θ = 1, then prove that cos2θ +1 cos4θ = 1
Given : sin θ + sin2 θ = 1
⇒ sin θ = 1 – sin2 θ
Taking LHS = cos2+ cos4
= cos2 θ + (cos2 θ)2
= (1– sin2 θ) + (1– sin2 θ)2 …(i)
Putting sin θ = 1 – sin2 θ in Eq. (i), we get
= sin θ + (sin θ)2
= sin θ + sin2 θ
= 1 [Given: sin θ + sin2 θ = 1]
=RHS
Hence Proved
If tanθ + secθ = x, show that sinθ =
To show :
Taking RHS
Given tan+sec=x
[∵ 1+ tan2 θ = sec2 θ]
=sin θ
=LHS
Hence Proved
If sinθ + cosθ = p and secθ + cosecθ = q, then show q(p2–1) =2p
Given: sin θ + cos θ = p and sec θ + cosec θ = q
To show q(p2 – 1) = 2p
Taking LHS = q(p2 – 1)
Putting the value of sin θ + cos θ = p and sec θ + cosec θ = q, we get
=(sec θ + cosec θ){( sin θ + cos θ )2 – 1)
=(sec θ + cosec θ){(sin2 θ + cos2 θ + 2sin θ cosθ) – 1)}
[∵ (a + b)2 = (a2 + b2 + 2ab)]
=(sec θ + cosec θ)(1+2sin θ cos θ – 1)
=(sec θ + cosec θ)(2sin θcosθ)
= 2(sin θ +cos θ)
= 2p [ given sin θ + cos θ = p]
=RHS
Hence Proved
If x cosθ =a and y = a tanθ, then prove that x2–y2=a2
Given: x cosθ = a and y = a tanθ
To Prove : x2–y2=a2
Taking LHS = x2–y2
Putting the values of x and y, we get
[∵ cos2 θ + sin2 θ = 1]
= a2
= RHS
Hence Proved
If x= r cos α sin β, y = r sin α sin β and z = r cos α then prove that x2 + y2 + z2 = r2.
Taking LHS = x2 + y2 + z2
Putting the values of x, y and z , we get
=(r cos α sin β)2 + (r sin α sin β)2 + (r cos α)2
= r2 cos2α sin2β + r2 sin2α sin2β + r2 cos2α
Taking common r2 sin2 α , we get
= r2 sin2α (cos2β + sin2 β) + r2cos2 α
= r2 sin2α + r2 cos2 α [∵ cos2 β + sin2 β = 1]
=r2 ( sin2 α + cos2 α)
= r2 [∵ cos2 α + sin2 α = 1]
=RHS
Hence Proved
If secθ – tanθ = x, then prove that
(i)
(ii)
(i) Given sec θ – tan θ = x
Taking RHS
Putting the value of x, we get
[∵ 1+ tan2 θ = sec2 θ]
= cos θ
=RHS
Hence Proved
(ii) Given sec θ – tan θ = x
Taking RHS
Putting the value of x, we get
[∵ 1+ tan2 θ = sec2 θ]
= sin θ
=RHS
Hence Proved
If a cos θ + b sinθ = c, then prove that a sinθ – b cos θ = ±
Let
(a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = a2cos2θ + b2 sin2θ + 2ab cos θ sin θ + a2sin2θ
+ b2 cos2θ – 2ab cos θ sin θ
⇒ c2 + (a sin θ – b cos θ)2 = a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
⇒ c2 + (a sin θ – b cos θ)2 = a2 + b2
⇒ (a sin θ – b cos θ)2 = a2 + b2 – c2
⇒ (a sin θ – b cos θ) = ±√ (a2 + b2 – c2)
If 1+sin2θ = 3 sinθ . cosθ, then prove that tan θ = 1 or 1/2.
Given: 1+sin2θ =3 sin θ cos θ
Divide by cos2 θ to both the sides, we get
⇒ sec2 θ + tan2 θ = 3 tan θ
⇒ 1+ tan2 θ+ tan2 θ = 3tan θ
⇒ 2 tan2 θ –3tan θ +1 = 0
Let tanθ = x
⇒ 2x2 – 3x +1 = 0
⇒ 2x2 – 2x – x +1 = 0
⇒ 2x ( x – 1) – 1(x – 1) = 0
⇒ (2x – 1)(x – 1) = 0
Putting each of the factor = 0, we get
⇒ x = 1 or
And above, we let tan θ = x
Hence Proved
If a cos θ – b sinθ = x and a sinθ + b cosθ = y that a2 + b2 = x2 + y2.
Taking RHS =x2 + y2
Putting the values of x and y, we get
(a cos θ – b sin θ)2 + (a sin θ + b cos θ)2
= a2cos2θ + b2 sin2θ – 2ab cos θ sin θ + a2sin2θ + b2 cos2θ + 2ab cos θ sin θ
= a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
= a2 + b2 [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved
If x = a sec θ + b tan θ a and y = a tan θ + b sec θ, then prove that x2 – y2 = a2 – b2.
Taking LHS =x2 – y2
Putting the values of x and y, we get
(a sec θ + b tan θ)2 – (a tan θ + b sec θ)2
= a2 sec2θ + b2 tan2θ + 2ab sec θ tan θ – a2tan2θ – b2 sec2θ – 2ab sec θ tan θ
= a2 (sec2θ – tan2θ) – b2 (sec2θ – tan2θ)
= a2 – b2 [∵ 1+ tan2 θ = sec2 θ]
=RHS
Hence Proved
If (a2 – b2) sin θ + 2ab cosθ = a2 + b2, then prove that .
Taking (a2 – b2) sin θ + 2ab cos θ = a2 + b2
We know that
Then, substituting the above values in the given equation, we get
Now, substituting, , we hwve
⇒ ( a2 – b2)2t – 2ab(1 – t2) = (a2 + b2)(1+t2)
Simplify, we get
(a2 + 2ab + b2)t2 – 2(a2 – b2)t + (a2 –2ab +b2)=0
⇒ (a+b)2 t2 – 2(a2 – b2)t + (a – b)2 = 0
⇒ (a+b)2 t2 –2 (a – b)(a+b)t + (a – b)2 =0
⇒ [(a+b)t – (a – b)]2 = 0 [∵ (a – b)2 = (a2 + b2 – 2ab)]
⇒ [(a+b)t – (a – b)] = 0
⇒ (a+b)t = (a – b)
We know that,
Hence Proved