Find an anti-derivative (or integral) of the following functions by the method of inspection.
sin 2x
Method: To find the anti derivative of a function by inspection
Steps: 1. In this method we look for a function whose derivative is the given function. For Example: if we need to find anti derivative of x2, we know that derivative of x3 is 3x2. Therefore, the variable terms comes out to be the same.
2. After that balance out the coefficients of variables by dividing and multiplying suitable terms. From above example if [we divide x3 by 3 we will get the answer as x2. Hence, we can say that anti derivative of x2 is x3/3.
Now, similarly,
We know that
Therefore, the anti-derivative of sin2x is
Find an anti-derivative (or integral) of the following functions by the method of inspection.
cos 3x
We know that
Therefore, the anti-derivative of cos3x is .
Find an anti-derivative (or integral) of the following functions by the method of inspection.
e2x
We know that
Therefore, the anti-derivative of is .
Find an anti-derivative (or integral) of the following functions by the method of inspection.
(ax + b)2
We know that
Therefore, the anti-derivative of is .
Find an anti-derivative (or integral) of the following functions by the method of inspection.
sin 2x – 4 e3x
We know that
Therefore, the anti-derivative of sin2x is …(1)
Also,
Therefore, the anti-derivative of is …(2)
From (1) and (2), we get,
= sin 2x – 4e3x
Therefore, the anti-derivative of sin 2x – 4 e3x is .
Find the following integrals.
Find the following integrals.
Find the following integrals.
Find the following integrals.
Find the following integrals.
Find the following integrals.
Separating the terms we get,
Find the following integrals.
Separating the terms we get,
Find the following integrals.
Now the numerator can be factorized as,
x3 - x2 + x - 1 = x2(x - 1) + 1(x - 1)
x3 - x2 + x - 1 = (x2 + 1)(x - 1)
Now putting this in given integral we get,
Find the following integrals.
Find the following integrals.
Find the following integrals.
Find the following integrals.
Find the following integrals.
Formulas Used: ∫ sec2x dx = tanx + c and ∫ secx tanx dx = sec x + c
Opening the brackets we get,
Find the following integrals.
= tanx –x +C
Find the following integrals.
= 2tanx – 3secx + C
The anti-derivative of equals
A.
B.
C.
D.
If such that f(2) = 0. Then f(x) is
A. B.
C. D.
Solution ||| The correct option is (A).
It is given that
Also, It is given that f(2) = 0
Therefore,
Given:
Let x2 + 1 = t
⇒ 2xdx = dt
⇒ xdx = � dt
When x = 0, t = 1 and when x = 1, t = 2
Evaluate the integrals using substitution.
Given:
Let
Also, let
when,
so,
Evaluate the integrals using substitution.
Given:
Let x = tan θ ⇒ dx = sec2 θ d θ
When, x = 0, θ = 0 and when x = 1, θ = π /4
Let
By applying product rule as,
Evaluate the integrals using substitution.
Given:
Let x + 2 = t2 ⇒ dx = 2t dt
And x = t2 -2
when, x = 0, t = √2 and when x = 2, t = 2
so,
Evaluate the integrals using substitution.
Given:
Let cos x = t
⇒ -sin xdx = dt
⇒ sin xdx = -dt
When x = 0, t = 1 and when x = π /2, t = 0
because,
Evaluate the integrals using substitution.
Given:
we can write it as,
let
when
because,
Evaluate the integrals using substitution.
Given:
Let x + 1 = t
⇒ dx = dt
When x = -1, t = 0 and when x = 1, t = 2
because,
Evaluate the integrals using substitution.
Given:
Let 2x = t ⇒ 2 dx = dt
When x = 1, t = 2 and when x = 2, t = 4
now, let 1/t = f(t)
then, f' (t) = -1/t2
because,
The value of the integral is
A. 6
B. 0
C. 3
D. 4
Given:
let
Now, let x = sin θ ⇒ dx = cos θ d θ
when, and when x = 1, θ = π/2
Now, let cot θ = t ⇒ - cosec2 θ d θ
when,
= 6
Correct option is: (A)
If then f'(x) is
A.
B.
C.
D.
Given:
Applying product rule,
⇒
= -x cos x + sin x – 0
⇒ f(x) = -x cos x + sinx
⇒ f'(x) = -[{x(-sinx )} + cosx ] + cosx
= x sin x – cos x + cos x
= x sin x
Correct answer is B.
By using the properties of definite integrals, evaluate the integrals
Given:
as,
Adding (1) and (2), we get
By using the properties of definite integrals, evaluate the integrals
Given:
let,
as,
Adding (1) and (2), we get
By using the properties of definite integrals, evaluate the integrals
Given:
Adding (1) and (2), we get
By using the properties of definite integrals, evaluate the integrals
Given:
Adding (1) and (2), we get
By using the properties of definite integrals, evaluate the integrals
Given:
As we can see that (x+2) ≤ 0 on [-5, -2] and (x+2) ≥ 0 on [-2,5]
By using the properties of definite integrals, evaluate the integrals
Given:
As we can see that (x-5)≤0 on [2,5] and (x+2)≥0 on [5,8]
⇒ I = 9
By using the properties of definite integrals, evaluate the integrals
Given:
By using the properties of definite integrals, evaluate the integrals
Given:
By using the properties of definite integrals, evaluate the integrals
Given:
By using the properties of definite integrals, evaluate the integrals
Given:
Adding (1) and (2), we get
By using the properties of definite integrals, evaluate the integrals
Given:
As we can see f(x) = sin2x and f(-x) = sin2(-x) = (sin (-x))2 = (-sin x)2 = sin2x.
i.e. f(x) = f(-x)
so, sin2x is an even function.
It is also known that if f(x) is an even function then,
By using the properties of definite integrals, evaluate the integrals
Given:
Adding (1) and (2), we get
⇒ I = π
By using the properties of definite integrals, evaluate the integrals
Given:
As we can see f(x) = sin7x and f(-x) = sin7(-x) = (sin (-x))7 = (-sin x)7 = -sin7x.
i.e. f(x) = -f(-x)
so, sin2x is an odd function.
It is also known that if f(x) is an odd function then,
By using the properties of definite integrals, evaluate the integrals
Given:
As we see, f(x)=cos5x and f(2π –x) = cos5(2π –x) = cos5x = f(x)
By using the properties of definite integrals, evaluate the integrals
Given:
Adding (1) and (2), we get
By using the properties of definite integrals, evaluate the integrals
Given:
Adding (1) and (2), we get
Here, if f(x) = log (sin x) and f(π – x)=log ( sin (π –x))= log (sin x ) = f(x)
Adding (1) and (2), we get
Let 2x = t ⇒ 2dx = dt
When x = 0, t = 0 and when x = π /2, t = π
By using the properties of definite integrals, evaluate the integrals
Given:
Adding (1) and (2), we get
By using the properties of definite integrals, evaluate the integrals
Given:
As we can see that (x-1)≤0 when 0≤x≤1 and (x-1)≥0 when 1≤x≤4
Show that if f and g are defined as and
Given:
Adding (1) and (2), we get
The value of
A. 0
B. 2
C.
D. 1
Given:
It is also known that if f(x) is an even function then,
It is also known that if f(x) is an odd function then,
Correct answer is C
The value of
A. 2
B.
C. 0
D. -2
Given:
Adding (1) and (2), we get
Correct answer is (c)
Given:
Let
Using partial differentiation:
let
⇒ 1 = A – Ax2 + Bx – Bx2 + Cx + Cx2
⇒ 1 = A + (B+C)x + (-A-B+C)x2
Equating the coefficients of x, x2 and constant value. We get:
(a) A = 1
(b) B+C = 0 ⇒ B = -C
(c) -A –B +C =0
⇒ -1 – (-C) +C = 0
⇒ 2C = 1 ⇒ C = 1/2
So, B = -1/2
Put these values in equation (1)
Integrate the function:
Given:
let
Multiply and divide by,
Integrate the function:
Given:
let
put
Integrate the function:
Given:
let
Multiply and divide by x-3, we get
Integrate the function:
Given:
or we can write it as,
Let x = t6⇒ dx = 6t5dt
After division we get,
Integrate the function:
Given:
Using partial differentiation:
let
⇒5x=A(x2+9)+(Bx+C)(x+1)
⇒ 5x = Ax2 +9A+ Bx2 +Bx+ Cx + C
⇒ 5x = 9A + C + (B+C)x + (A+B)x2
Equating the coefficients of x, x2 and constant value. We get:
(a) 9A + C = 0 ⇒ C = -9A
(b) B+C = 5 ⇒ B = 5-C ⇒ B = 5-(-9A) ⇒ B = 5 + 9A
( c) A + B =0 ⇒ A = -B ⇒ A = -(5 + 9A) ⇒ 10A = -5 ⇒ A = -1/2
and C = 9/2 and B = 1/2
Put these values in equation (1)
Put x2 = t ⇒ 2xdx = dt
Put the value in equ. (2)
Integrate the function:
Given:
Let x – a = t ⇒ x = t + a ⇒ dx = dt
As,{ sin (A+B) = sin A cos B + cos A sin B}
Integrate the function:
Given:
Integrate the function:
Given:
Put sin x = t ⇒ cos x dx = dt
Integrate the function:
Given:
Integrate the function:
Given:
Multiply and divide by sin (a-b), we get
As,{ sin (A-B) = sin A cos B - cos A sin B}
Integrate the function:
Given:
Now, let x4 = t ⇒ 4x3 dx = dt
And x3 dx = dt/4
Integrate the function:
Given:
Let ex = t ⇒ ex dx = dt
Integrate the function:
Given:
Using partial differentiation:
⇒1 = (Ax + B)(x2 + 4)+(Cx + D)(x2 + 1)
⇒ 1 = Ax3 +4Ax+ Bx2 + 4B+ Cx3 + Cx + Dx2 + D
⇒ 1 = (A+C)x3 +(B+D)x2 +(4A+C)x + (4B+D)
Equating the coefficients of x, x2, x3 and constant value. We get:
(a) A + C = 0 ⇒ C = -A
(b) B + D = 0 ⇒ B = -D
( c) 4A + C =0 ⇒ 4A = -C ⇒ 4A = A ⇒ 3A = 0 ⇒ A = 0 ⇒ C = 0
( d) 4B + D = 1 ⇒ 4B – B = 1 ⇒ B = 1/3 ⇒ D = -1/3
Put these values in equation (1)
Integrate the function:
Given:
Let
Let cos x = t ⇒ -sin x dx = dt ⇒ sin x dx = dt
Integrate the function:
Given:
Let
Let x4 = t ⇒ 4x3 dx = dt ⇒ x3 dx = dt/4
Integrate the function:
Given: f’ (ax + b)[f(ax + b)]n
Let f(ax +b) = t ⇒ a .f’ (ax + b)dx = dt
Integrate the function:
Given:
As,{ sin (A+B) = sin A cos B + cos A sin B}
Integrate the function:
Given:
let
As we know,
Now, first solve for I1:
because,
Put it in equ. (2)
Integrate the function:
Given:
let
Let x= cos2θ ⇒ dx = -2sinθ cosθ dθ
Integrate the function:
Given:
Now let tan x = f(x)
⇒ f’(x) = sec2x dx
Integrate the function:
Given:
Let
Using partial differentiation:
let
⇒ x2 + x + 1 = Ax2 + 3Ax + 2A + Bx +2B + Cx2 + 2Cx + C
⇒ x2 + x + 1 = (2A+2B+C) + (3A+B+2C)x + (A+C)x2
Equating the coefficients of x, x2 and constant value. We get:
(a) A + C = 1
(b) 3A + B + 2C = 1
( c) 2A+2B+C =1
After solving we get:
A=-2, B=1 and C=3
Integrate the function:
Given:
Let x= cosθ ⇒ dx = -sin θ d θ
Integrate:
Given:
Evaluate the definite integral:
Given:
Evaluate the definite integral:
Given:
Now let tan2x = t ⇒ 2 tan x sec2x dx = dt
And when x=0 then t=0 and when x=π /4 then t=1
Evaluate the definite integral:
Given:
First solve for I1:
Let 2 tan x = t ⇒ 2 sec2x dx dt
When x = 0 then t = 0 and when x = π /2 then t = ∞
Put this value in equ.(2)
Evaluate the definite integral:
Given:
Now let sin x – cos x = t ⇒( cos x + sin x )dx = dt
i.e. f(x) = f(-x)
so, f(x) is an even function.
It is also known that if f(x) is an even function then,
Evaluate the definite integral:
Given:
Evaluate the definite integral:
Let
Also, let sinx – cosx = t
Differentiating both sides, we get,
(cosx + sinx) dx = dt
When x = 0, t = -1
And when , t = 0
Now,
(sinx – cosx)2 = t2
1 – 2 sinx.cosx = t2
Sin2x = 1 – t2
Putting all the values, we get the integral,
Evaluate the definite integral:
Given:
Let sin x = t ⇒ cos x dx = dt
When x =0 then t = 0 and when x = π /2 then t = 1
Evaluate the definite integral:
Given:
Adding (1) and (2), we get
Evaluate the definite integral:
Given:
First solve for I1:
As we can see that (x-1)≥0 when 1≤x≤4
Now solve for I2:
As we can see that (x-2)≤0 when 1≤x≤2 and (x-2)≥0 when 2≤x≤4
Now solve for I3:
As we can see that (x-3)≤0 when 1≤x≤3 and (x-3)≥0 when 3≤x≤4
Prove:
Given:
Using partial differentiation:
⇒ 1 = Ax2 +Ax+ B+Bx+ Cx2
⇒ 1 = B + (A+B)x + (A+C)x2
Equating the coefficients of x, x2 and constant value. We get:
(a) B = 1
(b) A + B = 0 ⇒ A = -B ⇒ A = -1
( c) A + C =0 ⇒ C = -A ⇒ C = 1
Put these values in equation (1)
⇒ L.H.S = R.H.S
Hence proved.
Prove:
Given:
L.H.S = R.H.S
Hence Proved.
Prove:
Given:
As we can see f(x) =x17 .cos4x and f(-x) = (-x)17 .cos4(-x) = -x17 .cos4x
i.e. f(x) = -f(-x)
so, it is an odd function.
It is also known that if f(x) is an odd function then,
Hence proved.
Prove:
Given:
First solve for I1:
Let cos x = t ⇒ -sin x dx = dt ⇒ sinx dx = -dt
When x=0 then t= 1 and when x = π /2 then t = 0
Put in equ. (2)
L.H.S = R.H.S
Hence Proved.
Prove:
Given:
First solve for I1:
Let tan x = t ⇒ sec2 x dx = dt
When x=0 then t= 0 and when x = π /2 then t = 1
Put in equ. (2)
L.H.S = R.H.S
Hence Proved.
Prove:
Given:
First solve for I1:
Let 1 - x2 = t ⇒ -2 x dx = dt
When x=0 then t= 1 and when x = 1 then t = 0
Put in equ. (2)
L.H.S = R.H.S
Hence Proved.
Evaluate as a limit of a sum.
Given:
Here, a=0, b=1, and f(x)=e2-3x and h = 1/n
Choose the correct answers
is equal to
A.
B.
C.
D.
Given:
Put ex= t ⇒ ex dx = dt
Hence, correct option is (A).
Choose the correct answers
is equal to
A.
B.
C.
D.
Given:
Put sin x + cos x= t ⇒ cos x – sin x = dt
Hence, correct option is (B).
Choose the correct answers
If f (a + b – x) = f (x), then is equal to
A.
B.
C.
D.
Given:
Hence, correct option is (D).
Choose the correct answers
The value of
A. 1
B. 0
C. –1
D.
Given:
Adding (1) and (2), we get
Hence, correct option is (B).
Integrate the functions.
Let 1+x2 = t
⇒ 2x dx = dt
Now,
= log|t| + C
= log|1+x2| + C
= log(1+x2) + C
Integrate the functions.
Let log|x| = t
Now,
⇒
⇒
Integrate the functions.
let 1+logx =t
= log|t| + C
= log | 1+ logx| + C
Integrate the functions.
sin x sin (cos x)
Let cosx = t
⇒ -sinxdx = dt
⇒
=-[-cost] + C
= cost + C
= cos(cosx) + C
Integrate the functions.
sin (ax + b) cos (ax + b)
Let I = ∫sin (ax + b) cos (ax + b) dx
We know that,
sin 2A = 2sinA.cosA
Therefore,
sin (ax + b) cos (ax + b) =
Let 2(ax+b) = t
⇒ 2adx = dt
⇒
=
Integrate the functions.
Let ax + b =t
⇒ adx = dt
Integrate the functions.
Let (x +2) = t
⇒ dx = dt
Integrate the functions.
Let 1 +2x2 =t
⇒ 4xdx = dt
⇒
⇒
⇒
⇒
Integrate the functions.
Let x2 + x+ 1= t
Differentiating both sides, we get,
⇒ (2x + 1)dx = t dt
Therefore,
⇒
⇒
⇒
⇒
Integrate the functions.
Now, Let
⇒
⇒
= 2log|t| + C
= 2log|| + C
Integrate the functions.
Let x+ 4 = t
⇒ dx = dt
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
Integrate the functions.
Let x3 -1 = t
⇒ 3x2dx = dt
⇒
⇒
⇒
⇒
⇒
⇒
Integrate the functions.
Let 2 +3x3 = 1
⇒ 9x2 dx = dt
⇒
⇒
⇒
⇒
Integrate the functions.
Let log x = t
⇒
⇒
⇒
⇒
Integrate the functions.
Let 9 – 4x2 = t
⇒ -8xdx = dt
⇒
⇒
⇒
Integrate the functions.
Let 2x +3 =t
⇒ 2dx = dt
⇒
⇒
⇒
Integrate the functions.
Let x2 = t
⇒ 2xdx = dt
⇒
⇒
⇒
⇒
⇒
Integrate the functions.
let tan-1 x = t
⇒
⇒
= et + C
=
Integrate the functions.
We have,
Dividing numerator and denominator by ex, we get,
Let ex + e-x = t
Differentiating both sides, we get,
= log |t| +C
= log|ex + e-x| + C
Integrate the functions.
Let
⇒
⇒
⇒
⇒
⇒
= log |t| +C
= log|| + C
Integrate the functions.
tan2 (2x – 3)
tan2 (2x – 3) = sec2 (2x – 3) – 1
Let 2x -3 = t
⇒ 2dx = dt
⇒
⇒
⇒
⇒ 1/2 tan t - t + C
⇒ 1/2 tan (2x - 3) - (2x - 3) + C
Integrate the functions.
sec2 (7 – 4x)
Let 7 – 4x = t
⇒ -4dx = dt
⇒
⇒
⇒
Integrate the functions.
let sin-1 x =t
⇒
⇒
⇒
⇒
Integrate the functions.
let 3cosx + 2sinx = t
(-3sinx + 2cosx)dx = dt
⇒
⇒
⇒
⇒
Integrate the functions.
Let (1 – tanx) = t
⇒ -sec2xdx = dt
⇒
⇒
⇒
Integrate the functions.
Let
⇒
⇒
= 2sint + C
= 2sin + C
Integrate the functions.
Let sin2x = t
⇒ 2cos2xdx = dt
.
⇒
⇒
Integrate the functions.
Let 1 + sinx = t
⇒ cosx dx = dt
⇒
⇒
⇒
⇒
Integrate the functions.
cot x log sin x
Let Log sinx = t
⇒
⇒ cotx dx = dt
⇒
⇒
⇒
Integrate the functions.
Let 1+ cosx = t
⇒ -sinx dx = dt
⇒
= - log|t| + C
= -log|1 + cosx| + C
Integrate the functions.
Let 1 + cosx = t
⇒ -sinx dx = dt
⇒
⇒
⇒
⇒
Integrate the functions.
Let I =
⇒
⇒
⇒
⇒
⇒
⇒
Let sinx + cosx = t
⇒ (cosx-sinx)dx = dt
Therefore, I =
⇒
⇒
Integrate the functions.
Let I =
⇒
⇒
⇒
⇒
⇒
⇒
⇒
Let cosx - sinx = t
⇒ (-sinx-cosx)dx = dt
Therefore, I =
⇒
⇒
Integrate the functions.
Let I =
⇒
⇒
⇒
Let tanx = t
⇒ sec2x dx = dt
⇒ I =
= 2+C
= 2 + C
Integrate the functions.
let 1 + log x = t
⇒ = dt
⇒
⇒
⇒
Integrate the functions.
Let (x+logx) = t
⇒
⇒
⇒
⇒
Integrate the functions.
Let x4 = t
⇒ 4 x3 dx = dt
⇒
⇒
Let tan-1 = v
⇒
Thus, we get,
⇒
⇒
⇒
⇒
Choose the correct answer:
A. 10x – x10 + C
B. 10x + x10 + C
C. (10x – x10)–1 + C
D. log (10x + x10) + C
Let x10 + 10x = t
⇒ (10x9 + 10x loge10)dx = dt
⇒
= log t + C
= log(x10 + 10x) + C
equals
A. tan x + cot x + C B. tan x – cot x + C
C. tan x cot x + C D. tan x – cot 2x + C
Let I =
⇒
⇒
⇒
= tanx – cotx + C
Find the integrals of the functions.
⇒
⇒
⇒
⇒
⇒
Find the integrals of the functions.
⇒
⇒
⇒
⇒
⇒
Find the integrals of the functions.
⇒
⇒
⇒
⇒
⇒
Find the integrals of the functions.
Let I = sin3(2x+1)
⇒
⇒
Let cos (2x+1) = t
=> -2sin(2x+1)dx = dt
=> sin(2x+1)dx =
⇒
⇒
⇒
⇒
Find the integrals of the functions.
Let I =
⇒
⇒
Let cosx = t
⇒ -sinx.dx = dt
⇒ I
⇒
⇒
⇒
⇒
Find the integrals of the functions.
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
Find the integrals of the functions.
⇒
⇒
⇒
Find the integrals of the functions.
⇒
⇒
⇒
Find the integrals of the functions.
⇒
⇒
⇒
⇒
⇒
Find the integrals of the functions.
sin4x = sin2xsin2x
⇒
⇒
⇒
⇒
⇒
⇒
Now,
⇒
⇒
⇒
Find the integrals of the functions.
cos42x = (cos22)2
⇒
⇒
⇒
⇒
⇒
⇒
Now,
⇒
Find the integrals of the functions.
⇒
⇒
= 1- cosx
⇒
= x – sinx + C
Find the integrals of the functions.
Using the identity , we have
Now, using the identity sin 2x = 2 sin x cos x, we have
= 2[cos(x) +cosα]
= 2cosx + 2 cosα
⇒
= 2[sinx + xcosα] + C
Find the integrals of the functions.
⇒
⇒
Let sinx + cosx = t
⇒ (cosx-sinx)dx =dt
⇒
⇒
= -t-1 + C
⇒
⇒
Find the integrals of the functions.
tan32xsec2x = tan22xtan2xsec2x
= (sec22x -1)tan2xsec2x
= sec22x.tan2xsec2x-tan2xsec2x
⇒
⇒
Now, Let sec2x = t
⇒ 2sec2xtan2x dx = dt
Thus,
⇒
⇒
Find the integrals of the functions.
tan4x = tan2x.tan2x
= (sec2x-1) tan2x
= sec2x tan2x- tan2x
= sec2x tan2x- (sec2x-1)
= sec2x tan2x- sec2x+1
Now,
⇒
Now, let tanx = t
=> sec2x dx =dt
⇒
⇒
Find the integrals of the functions.
⇒
⇒
= tanxsecx + cotxcosecx
⇒ Now,
= secx – cosecx + C
Find the integrals of the functions.
⇒
= sec2x
Now,
= tanx + C
Find the integrals of the functions.
⇒
⇒
Now,
let tanx = t
⇒ sec2x dx = dt
⇒
⇒
⇒
Find the integrals of the functions.
Now,
Let 1 + sin2x = t
⇒ 2cos2x dx = dt
Thus,
⇒
⇒
⇒
= log|sinx + cosx| + C
Find the integrals of the functions.
sin-1(cosx)
Let cosx = t.......(1)
Then, sinx =
Differentiating both sides of (1), we get,
⇒ (-sinx)dx = dt
⇒ dx =
⇒ dx =
⇒ Now,
⇒
Let sin-1 t = v
⇒
⇒ ∫sin-1(cosx) dx = - ∫vdv
⇒
⇒
…(1)
We know that,
sin-1x + cos-1 x =
⇒ sin-1(cosx)=
Now, substituting in eq(1), we get,
⇒
⇒
⇒
⇒
⇒
Find the integrals of the functions.
⇒
⇒
⇒
Now,
⇒
⇒
A. B.
C. D.
We know that,
∫sec2x dx = tan x + c
∫cosec2x dx = - cot x + c
= tanx + cotx + C.
A: Answer
A. B.
C. D.
Let x.ex = t
Differentiating both sides we get,
⇒ (ex.x + ex.1)dx = dt
⇒ ex(x + 1) = dt
Now,
= tan t + C
= tan(ex.x) + C
Integrate the functions.
Let x3 = t
⇒ 3x2 dx = dt
= tan-1t + C
= tan-1(x3) + C
Integrate the functions.
Let 2x= t
⇒ 2dx = dt
⇒
⇒
Integrate the functions.
Let 2 – x = t
⇒ -dx = dt
⇒
⇒
⇒
Integrate the functions.
Let 5x = t
⇒ 5dx = dt
⇒
⇒
⇒
Integrate the functions.
Let = t
⇒ 2dx = dt
⇒
⇒
⇒
Integrate the functions.
Let x3 = t
⇒ 3x2 dx = dt
⇒
⇒
⇒
Integrate the functions.
For ,
Let x2 -1 = t
⇒ 2x dx = dt
⇒
⇒
⇒
⇒
⇒
Integrate the functions.
Let x3 = t
⇒ 3x2 dx = dt
⇒
⇒
⇒
Integrate the functions.
Let tanx = t
⇒ sec2xdx = dt
⇒
⇒
⇒
Integrate the functions.
Let x+1 = t
⇒ dx = dt
⇒
⇒
⇒
⇒
Integrate the functions.
⇒
Let 3x+1= t
⇒ 3dx = dt
⇒
⇒
⇒
Integrate the functions.
Let x+3= t
⇒ dx = dt
⇒
⇒
⇒
Integrate the functions.
Let
⇒ dx = dt
⇒
⇒
⇒
Integrate the functions.
Let
⇒ dx = dt
⇒
⇒
⇒
Integrate the functions.
(x - 1)(x - b) can be written as x2 – (a+b)x + ab.
Then, x2 – (a+b)x + ab = x2 – (a+b)x +
⇒
⇒
Let x =
⇒ dx = dt
⇒
⇒
⇒
Integrate the functions.
Let 4x + 1 =
⇒ 4x + 1 = A(4x + 1) + B
⇒ 4x + 1 = 4Ax+ A+ B
Now, equating the coefficients of x and constant term on both sides, we get,
4A = 4
⇒ A = 1
A + B = 1
⇒ B = 0
Let 2x2 + x – 3 =t
⇒ (4x + 1) dx = dt
⇒
⇒
2
Integrate the functions.
Let x + 2 =
⇒ x + 2 = A(2x) + B
Now, equating the coefficients of x and constant term on both sides, we get,
2A = 1
⇒ A =
B = 2
⇒ x + 2 = (2x) + 2
⇒
⇒
Now,
Let x2 - 1 = t
⇒ (2x)dx = dt
⇒
⇒
And
⇒
Integrate the functions.
Let 5x - 2 =
⇒ 5x - 2 = A(2 + 6x) + B
Now, equating the coefficients of x and constant term on both sides, we get,
6A = 5
⇒ A =
2A + B = -2
⇒ B =
⇒ 5x - 2 = (2 + 6x) +
⇒
⇒
Now,
Let 1+2x+3x2 = t
⇒ (2 + 6x)dx = dt
⇒
= log|1+2x+3x2| …(1)
And
1+2x+3x2 =
⇒
⇒
⇒
⇒
…(2)
Thus, from (1) and (2), we get,
⇒
⇒
Integrate the functions.
Let 6x + 7 =
⇒ 6x + 7 = A(2x - 9) + B
Now, equating the coefficients of x and constant term on both sides, we get,
2A = 6
⇒ A = 3
-9A + B = 7
⇒ B = 34
⇒ 6x + 7 = 3 (2x - 9) + 34
⇒
⇒
Now,
Let x2 – 9x + 20 = t
⇒ (2x - 9)dx = dt
----------(1)
And
x2 – 9x + 20 =
⇒
⇒
…(2)
Thus, from (1) and (2), we get,
⇒
⇒
Integrate the functions.
Let x + 2 =
⇒ x + 2 = A(4 -2x) + B
Now, equating the coefficients of x and constant term on both sides, we get,
-2A = 1
⇒ A =
4A + B = 2
⇒ B = 4
⇒ x + 2 =
Now,
⇒
Now, let us consider,
Let 4x – x2 = t
⇒ (4 -2x) dx= dt
…(1)
And, Now let us consider,
Then, 4x – x2 = -(-4x + x2)
= (-4x + x2 + 4 – 4)
= 4 – (x - 2)2
= (2)2 – (x - 2)2
…(2)
using eq. (1) and (2), we get,
⇒
Integrate the functions.
⇒
⇒
⇒
Now, Let us consider
Let x2 + 2x + 3 = t
⇒ (2x + 2)dx = dt
… (1)
And, now let us consider
⇒ x2 + 2x + 3 = x2 + 2x + 1 + 2 = (x +1)2 + (2
⇒
Using eq. (1) and (2), we get,
⇒
⇒
Integrate the functions.
Let x + 3 =
⇒ x + 3 = A(2x-2) + B
Now, equating the coefficients of x and constant term on both sides, we get,
2A = 1
⇒ A =
-2A + B = 3
⇒ B = 4
⇒ x + 3 =
Now,
⇒
Now, Let us consider
Let x2 – 2x – 5 = t
⇒ (2x -2)dx = dt
And, now let us consider,
⇒
⇒
…(2)
Using eq. (1) and (2), we get,
⇒
⇒
Integrate the functions.
Let 5x + 3 =
⇒ 5x + 3 = A(2x + 4) + B
Now, equating the coefficients of x and constant term on both sides, we get,
2A = 5
⇒ A =
4A + B = 3
⇒ B = -7
⇒ 5x + 3 =
Now,
⇒
Now, let us consider,
Let x2 +4x + 10= t
⇒ (2x + 4) dx= dt
… (1)
And, Now let us consider,
⇒
⇒
…(2)
using eq. (1) and (2), we get,
⇒
⇒
Choose the correct answer:
A.
B.
C.
D.
⇒
⇒
Choose the correct answer:
A.
B.
C.
D.
⇒
⇒
⇒
⇒
Integrate the rational functions.
Let
⇒ x = A(x + 2) + B(x +1)
On comparing the coefficients of x and constant term, we get,
A + B = 1
2A + B = 0
On solving above two equations, we get,
A = -1 and B = 2
Thus,
= -log|X + 1| + 2log|x + 2| + C
= log (x+2)2 – log |x + 1| + C
Integrate the rational functions.
Let
⇒ 1= A(x - 3) + B(x + 3)
On comparing the coefficients of x and constant term, we get,
A + B = 0
-3A + 3B = 1
On solving above two equations, we get,
A = and B =
Thus,
Integrate the rational functions.
Let
⇒ 3x -1 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2) …(1)
Substituting x = 1, 2 and 3 respectively in equation (1), we get,
A = 1, B = -5 and C = 4
Thus,
= log|x -1| -5log|x-2| + 4log|x-3| + C
Integrate the rational functions.
Let
⇒ x = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2) …(1)
Substituting x = 1, 2 and 3 respectively in equation (1), we get,
A = , B = -2 and C =
Thus,
Integrate the rational functions.
Let
⇒ 2x = A(x + 2)+ B(x + 1) …(1)
Substituting x = -1 and -2 respectively in equation (1), we get,
A = -2, B = 4
Thus,
= 4log|x + 2| -2log|x + 1| + C
Integrate the rational functions.
On dividing 1 – x2 by x(1 - 2x), we get,
…(1)
Now, let
(2 – x) = A(1 – 2x) + Bx …(2)
Now, substituting x = 0 and in equation (2), we get,
A = 2 and B = 3
Thus,
Now, putting this value in equation (2), we get,
Integrate the rational functions.
Let
x = (Ax + B)(x -1) + C (x2 + 1)
⇒ x = Ax2 – Ax + Bx – B + Cx2 + C
Equating the coefficients of x2, x and constant term, we get,
A + C = 0
-A + B = 0
-B + c = 0
On solving these equation, we get,
A = , B = and C =
Thus,
Now, let us consider, ,
Let (x2 + 1) = t
2xdx = dt
Thus,
Therefore,
Integrate the rational functions.
Let
⇒ x = A(x - 1)(x + 2) + B(x + 2) + C( x – 1)2 …(1)
Substituting x = -1 in equation (1), we get,
B =
Equating the coefficients of x2 and constant term, we get,
A + C = 0
-2A + 2B + C = 0
A = and c =
Thus,
Integrate the rational functions.
Let
⇒3x + 5 = A(x - 1)(x + 1) + B(x + 1) + C( x – 1)2
⇒3x + 5 = A(x2 - 1) + B(x + 1) + C( x2 + 1 – 2x) …(1)
Substituting x = 1 in equation (1), we get,
B = 4
Equating the coefficients of x2 and x, we get,
A + C = 0
b – 2C = 3
A = and c =
Thus,
Integrate the rational functions.
Let
⇒2x – 3 = A(x - 1)(2x + 3) + B(x + 1)(2x + 3) + C(x+1)( x – 1)
⇒ 2x – 3 = A(2x2 + x – 3) + B(2x2 + 5x + 3) + C(x2 - 1)
⇒2x - 3 = (2A + 2B + C)x2 + (A + 5B)x + (-3A + 3B – C)
Equating the coefficients of x2 and x, we get,
B =, A = and C =
Thus,
Integrate the rational functions.
Let
⇒ 5x = A(x + 2)(x - 2) + B(x + 1)(x - 2) + C(x+1)( x + 2) …(1)
Substituting x = -1, -2 and 2 respectively in equation (1), we get,
A =, B =, and C =
Thus,
Integrate the rational functions.
Dividing (x3 + x + 1) by x2 -1, we get,
Let
Now, 2x + 1 = A(x – 1) + B(x + 1) …(1)
Substituting x = 1 and -1 in equation (1), we get,
A = and B =
Thus,
Integrate the rational functions.
Let
⇒ 2 = A(1 – x2) + (Bx + C)(1 – x)
⇒ 2 = A + Ax2 + Bx – Bx2 + C – Cx
On comparing the coefficients of x2, x and constant term, we get,
A – B = 0
B – C = 0
A + C = 0
On solving these equations, we get,
A = 1, B =1 and C = 1
Thus,
Integrate the rational functions.
Let
⇒ 3x -1 = A(x + 2) + B
Equating the coefficients of x and constant term, we get,
A = 3
2A + B = -1
B = -7
Thus,
Integrate the rational functions.
Let
1 = A(x-1)(x2+1) + B(x+1)(x2+1) + (Cx + D)(x2 - 1)
1 = A(x3 + x – x2 -1) + B(x3 + x + x2 + 1) + Cx3 + Dx2 - Cx - D
1 = (A + B + C)x3 + (-A + B + D)x2 + (A + B - C)x + (-A + B - D)
Equating the coefficients of x3, x2, x and constant term, we get,
(A + B + C) = 0
(-A + B + C) = 0
(A + B - C) = 0
(-A + B - D) = 0
On solving these equations, we get,
A =
Therefore,
Integrate the rational functions.
[Hint: multiply numerator and denominator by xn-1 and put xn=t]
Multiplying numerator and denominator by xn-1, we get,
Let xn = t
xn-1dx = dt
Therefore,
Let
1 = A(1+t) + Bt ...(1)
Substituting t = 0, -1 in equation (1), we get,
A =1 and B = -1
Thus,
Integrate the rational functions.
Let sinx = t
cosx dx = dt
Therefore,
Let
1 = A(2 – t) + B (1 – t) …(1)
Substituting t = 2 and then t = 1 in equation (1), we get,
Therefore,
Integrate the rational functions.
Now,
Let
4x2 + 10 = (Ax + B)(x2 + 4) + (Cx + D)(x2 + 3)
⇒ 4x2 + 10 = Ax3 + 4Ax + Bx2 + 4B + Cx3 + 3Cx + Dx2 + 3D
⇒ 4x2 + 10 = (A+C)x3 + (B + D)x2 + (4A + 3C)x + (4B + 3D)
Equating the coefficients of x3, x2, x and constant term, we get,
A + C = 0
B + D = 0
4A + 3C = 0
4B + 3 B = 0
On solving these equations, we get,
A = 0, B = -2, C = 0 and D = 6
Therefore,
Integrate the rational functions.
Now,
Now, let x2 = t
2xdx = dt
Thus, …(1)
Let
1 = A(t + 3) + B(t + 1)……………….(2)
Substituting t = -3 and -1 in (2), we get
A = and B =
Integrate the rational functions.
Now,
Multiplying numerator and denominator by x3, we get,
Now, let x4 = t
4x3dx = dt
Thus,
Let
1 = A(t – 1) + Bt …(1)
Substituting t = 0 and 1 in (1), we get
A = -1 and B = 1
Integrate the rational functions.
[Hint: Put ex = t]
Now,
Let ex = t
ex dx = dt
Let
1 = A(t – 1) + Bt …(1)
Substituting t =1 and t = 0 in equation (1), we get,
A = -1 and B = 1
Choose the correct answer
A.
B.
C.
D.
Let
x = A(x – 2) + B(x - 1) …(1)
Substituting x =1 and 2 in (1), we get,
A = -1 and B = 2
= -log|x – 1| + 2log| x – 2| + C
Integrate the rational functions.
A.
B.
C.
D.
Let
1 = A(X2 + 1) + (Bx + C)
Equating the coefficients of x2, x and constant term, we get,
A + B = 0
C = 0
A = 1
On solving these equations, we get,
A = 1, B = -1 and C = 0
Integrate the functions.
Let I = xsinx
Now, integrating by parts, we get,
Integrate the functions.
Let I = sin3x
Now, integrating by parts, we get,
Integrate the functions.
Let I = x2ex
Now, integrating by parts, we get,
Again integrating by parts, we get,
Integrate the functions.
Let I = xlogx
Now, integrating by parts, we get,
Taking, Logarithmic function as first function and algebraic function as second function,Integrate the functions.
Let I = xlog2x
Now, integrating by parts, we get,
Integrate the functions.
Let I = x2logx
Now, integrating by parts, we get,
Integrate the functions.
Let I = xsin-1x
Now, integrating by parts, we get,
Integrate the functions.
Let I = xtan-1x
Now, integrating by parts, we get,
Integrate the functions.
Let I = xcos-1x
Now, integrating by parts, we get,
…(1)
Now,
Now, substituting in (1), we get,
Integrate the functions.
Let I = (sin-1x)2
Now, integrating by parts, we get,
Integrate the functions.
Let
Now, integrating by parts, we get,
Integrate the functions.
Let I = xsec2x
Now, integrating by parts, we get,
= xtanx + log|cosx| + C
Integrate the functions.
Let
So, now integrating by parts, we get,
Integrate the functions.
Let
Integrating by parts, we get,
Integrate the functions.
Now, Let I = I1 + I2 …(1)
Where,
So, now
Integrating by parts, we get,
…(2)
Now,
Integrating by parts, we get,
= xlogx –x + C2 …(3)
Now putting the value of I1 and I2, in (1), we get,
I
Integrate the functions.
Now,
Let
We know that,
Thus,
Integrate the functions.
Now,
Let
We know that,
Thus,
Integrate the functions.
Now,
Let
We know that,
Thus,
Integrate the functions.
Let I
Now, let
We know that,
Thus,
Integrate the functions.
Now, let f(x) =
We know that,
Thus,
Integrate the functions.
Let I = e2xsinx
Integrating by parts, we get,
I
Again, integrating by parts, we get,
Integrate the functions.
Let x = tanƟ
⇒ dx = sec2ƟdƟ
Thus,
Integrating by parts, we get
= 2[ƟtanƟ + log|cosƟ| + C
Choose the correct answer:
A.
B.
C.
D.
Let I =
Also, let x3 = t
⇒ 3x2dx = dt
Thus,
⇒ I =
Choose the correct answer:
A.
B.
C.
D.
Let I =
Also, let secx = f(x)
⇒ secxtanx = f’(x)
We know that,
Thus, I = exsecx + C
Integrate :
We know that,
⇒
Therefore,
⇒
⇒
Integrate :
⇒
Let 2= t
⇒
We know that,
⇒
Therefore,
⇒
⇒
⇒
⇒
Integrate :
⇒
⇒
⇒
⇒ We know that,
⇒
Therefore,
⇒
⇒
Integrate :
⇒
⇒
⇒
We know that,
Therefore,
⇒
Integrate :
⇒
⇒
⇒
⇒
We know that,
⇒
⇒
Integrate :
⇒
⇒
We know that,
⇒
⇒
Integrate :
⇒
⇒
⇒
⇒
We know that,
⇒
Therefore,
⇒
⇒
Integrate :
⇒
⇒
⇒
We know that,
⇒
Therefore,
⇒
⇒
Integrate :
⇒
⇒
⇒
We know that,
⇒
Therefore,
⇒
Choose the correct answer
is equal to
A.
B.
C.
D.
We know that,
⇒
Therefore,
⇒
Choose the correct answer
is equal to
A.
B.
C.
D.
⇒
⇒
⇒
We know that,
⇒
Therefore,
⇒
Evaluate using limit of sums
f(x) is continuous in [a,b]
here h=b-a/n
Evaluate using limit of sums
f(x) is continuous in [0,5]
here h=5/n
Evaluate using limit of sums
f(x) is continuous in [2,3]
here h=1/n
Evaluate using limit of sums
f(x) is continuous in [1,4]
here h=3/n
Evaluate using limit of sums
f(x) is continuous in [-1,1]
here h=2/n
Which is g.p with common ratio e1/n.
Whose sum is
=-1
As h=2/n
=e-e-1
Evaluate using limit of sums
F(x)=h(x)+g(x)
Solving for h(x)
. h(x) is continuous in [0,4]
here h=4/n
=8
Now solving for g(x)
g(x) is continuous in [0,4]
here h=4/n
Which is g.p with common ratio e1/n
Whose sum is
As h=4/n
=(e8-1)
Now for f(x)=h(x)+g(x)
=8+ e8-1
Evaluate
⇒ I = 2
∴
Evaluate
Let I =
[]
⇒ I = log |3| - log |2|
⇒ I = log 3/2
Evaluate
Let I =
[]
Evaluate
Let I =
⇒ I =
[∫sinx dx=-cosx]
⇒ I = - (cos 2×π/4 – cos 0)/2
⇒ I = - (cos π/2 – cos 0)/2 = - (0 – 1)/2
⇒ I = 1/2
∴ = 1/2
Evaluate
Let I =
⇒ I =
[]
⇒ I = � × (0 – 0) = 0
∴ = 0
Evaluate
Let I =
⇒ I =
⇒ I = = e5 – e4[]
⇒ I = e4 (e – 1)
∴ = e4 (e – 1)
Evaluate
Let I =
⇒ I = []
⇒ I = =
⇒ I =
⇒ I =
∴ =
Evaluate
Let I =
⇒ I =
[]
⇒ I = log |cosec π/4 – cot π/4| - log |cosec π/6 – cot π/6|
⇒ I = log |√2 – 1| - log |2 - √3|
∴ =
Evaluate
Let I =
⇒ I = []
⇒ I =
⇒ I = sin-1(1) – sin-1(0) = π/2 – 0
⇒ I = π/2
∴ = π/2
Evaluate
Let I =
⇒ I =
We know that,
⇒ I =
⇒ I = tan-1(1) – tan-1(0) = π/4 – 0
⇒ I = π/4
∴ = π/4
Evaluate
Let I =
⇒ I = []
⇒ I = =
⇒ I = =
⇒ I = � log 3/2
∴ = � log 3/2
Evaluate
Let I =
cos 2x = 2cos2x – 1
cos2x =
putting the value cos2x in I
⇒ I = []
⇒ I =
⇒ I = = π/4
∴ = π/4
Evaluate
Let I =
Let x2 + 1 = t …(i)
∴ d(x2 + 1) = dt
⇒ 2x dx = dt
⇒ x dx = dt/2
When x = 2; t = 22 + 1 = 5
When x = 3; t = 32 + 1 = 10
Substituting x2 + 1 and x dx in I
⇒ I = []
⇒ I =
⇒ I = � log 2
= � log 2
Evaluate
Let I =
Multiplying by 5 in numerator and denominator
⇒ I =
⇒ I =
⇒ I = I1 + I2
I1 =
Let 5x2 + 1 = t ….(i)
d(5x2 + 1) = dt
10x dx = dt …..(ii)
When x = 0; t = 5 × 02 + 1 = 1
When x = 1; t = 5 × 12 + 1 = 6
Substituting (i) and (ii) in I1
I1 = []
I1 =
I1 =
I2 = []
I2 =
I2 = 3/√5 tan-15
∵ I = I1 + I2
∴ I = 1/5 log 6 + 3/√5 tan-15
∴ = 1/5 log 6 + 3/√5 tan-15
Evaluate
Let I =
Put x2 = t ⇒ 2x dx = dt
When x = 0; t = 0
When x = 1; t = 1
Substituting t and dt in I
⇒ I = = � []
⇒ I =
∴ = � (e – 1)
Evaluate
Let I =
Dividing 5x2 by x2 + 4x + 3 we get 5 as quotient and –(20x + 15) as remainder
So, I =
⇒ I = =
⇒ I = 5 (2 – 1) -
⇒ I = 5 – I1
I1 =
Adding and subtracting 25 in the numerator
I1 =
I1 =
Let x2 + 4x + 3 = t
(2x + 4)dx = dt
∴ I1 =
I1 = 10 log t - []
I1 = 10 log t - []
I1 =
I1 = 10
I1 =
I1 =
I1 =
I1 =
I1 =
∵ I = 5 – I1
Substituting I1 in I we get
I = 5 –
∴ = 5 –
Evaluate
Let I =
⇒ I =
⇒ I = []
⇒ I = 2 (tan π/4 – tan 0) + � ((π/4)4 – 0) + 2 (π/4 – 0)
⇒ I =
⇒ I =
∴
Evaluate
Let I =
We know,
Substituting in I, we get
⇒ I = []
⇒ I =
∴ = 0
Evaluate
Let I =
I =
∴ I = I1 + I2
I1 =
Let x2 + 4 = t
2x dx = dt
When x = 0; t = 4
When x = 2; t = 22 + 4 = 8
Substituting t and dt in I1
⇒ I1 = []
⇒ I1 = 3 [log |8| - log |4|] = 3 log 8/4
⇒ I1 = 3 log � = -3 log 2
I2 = = []
⇒ I2 =
⇒ I2 = = 3π/8
Now I = I1 + I2
I = 3 log � + 3π/8
∴ = 3 log � + 3π/8
Evaluate
Let I =
⇒ I =
I = I1 + I2
I1 =
⇒ I1 = []
⇒ I1 =
⇒ I1 = e – e – 0 + 1
⇒ I1 = 1
I2 = []
⇒ I2 =
⇒ I2 = =
Since, I = I1 + I2
∴ I = 1 +
∴ = 1 +
equals
A. π/3
B. 2π/3
C. π/6
D. π/12
Let I =
⇒ I =
⇒ I = []
⇒ I = π/12
∴ π/12
equals
A. π/6
B. π/12
C. π/24
D. π/4
Let I =
⇒ I =
Taking 9 common from Denominator in I
⇒ I = []
⇒ I =
⇒ I =
⇒ I = = π/24
∴ = π/24