In right angle triangle ABC, 8 cm, 15 cm and 17 cm are the lengths of AB, BC and CA respectively. Then, find out sin A, cos A and tan A.
We have
Given: ∠ABC = 90°, AB = 8 cm, BC = 15 cm and CA = 17 cm
We know sin A is given by,
⇒ [∵, perpendicular is the side opposite to the angle A & hypotenuse is the side opposite to the right angle of that triangle]
⇒ …(i)
Also, cos A is given by
⇒
⇒ …(ii)
Now, tan A can be found out by two ways:
Method 1: tan A is given by,
⇒
⇒
Method 2: tan A can also be written as,
⇒ [from equations (i) & (ii)]
⇒
Thus, , and .
The sides of a right angle triangle PQR are PQ = 7 cm, QR = 25 cm and ∠Q = 90° respectively. Then find, tan P – tan R.
We have
We don’t need to find hypotenuse (PR) in the ∆PQR as tan θ = perpendicular/base.
⇒
And
⇒
tan P – tan R =
⇒ tan P – tan R =
⇒ tan P – tan R = 576/175
Thus, tan P – tan R = 576/175
In a right angle triangle ABC with right angle at B, in which a = 24 units, b = 25 units and ∠BAC = θ. Then, find cosθ and tanθ.
We have
In ∆ABC, ∠ABC = 90° and ∠BAC = θ.
Using this information, we can say
AC = hypotenuse of the triangle
BC = perpendicular (side opposite to the angle θ or ∠BAC)
Using Pythagoras theorem,
(hypotenuse)2 = (perpendicular)2 + (base)2
⇒ (25)2 = (24)2 + (base)2
⇒ (AB)2 = 625 – 576
⇒ (AB)2 = 49
⇒ AB = √49 = 7 units
So, we have AB = 7 units, BC = 24 units and AC = 25 units.
Thus,
⇒
And
⇒
Thus, and .
Given that,
But
⇒
⇒ base = 12 and hypotenuse = 13
So, using Pythagoras theorem, we can say
(hypotenuse)2 = (perpendicular)2 + (base)2
⇒ (perpendicular)2 = (hypotenuse)2 – (base)2
⇒ (perpendicular)2 = (13)2 – (12)2
⇒ (perpendicular)2 = 169 – 144 = 25
⇒ perpendicular = √25 = 5
Using perpendicular = 5, base = 12 and hypotenuse = 13, we can find out sin A and tan A.
Sin A is given by
⇒
And, tan A is given by
⇒
Thus, and .
If 3 tanA = 4, then find sin A and cos A.
Given that, 3 tan A = 4
⇒
But
⇒
⇒ perpendicular = 4 and base = 3
So, using Pythagoras theorem, we can say
(hypotenuse)2 = (perpendicular)2 + (base)2
⇒ (hypotenuse)2 = (4)2 + (3)2
⇒ (hypotenuse)2 = 16 + 9 = 25
⇒ hypotenuse = √25 = 5
Using perpendicular = 4, base = 3 and hypotenuse = 5, we can find out sin A and cos A.
Sin A is given by
⇒
And, cos A is given by
⇒
Thus, and .
If ∠A and ∠X are acute angles such that cos A = cos X then show that ∠A = ∠X.
We have
In this ∆AOX,
cos A = cos X
and cos A is given by,
[∵, ]
Similarly,
⇒
⇒ AO = OX [clearly, since denominator from either sides cancel each other]
Now, if sides AO and OX of ∆AOX are equal.
Then, ∠A = ∠X [∵, In a triangle, angles opposite to the equal sides are also equal]
Hence, ∠A = ∠X
Given then evaluate
A.
We have been given that,
And we have to solve for .
We know the formula: (x + y)(x – y) = x2 – y2
Using this,
Also, we know the relationship between cos θ and sin θ which is given by
cos2 θ + sin2 θ = 1
⇒ cos2 θ = 1 – sin2 θ
So,
⇒
As we know,
So, B = 7 and P = 8
By Pythagoras theorem,
H2 = P2 + B2
H2 = 82 + 72
= 64 + 49
=113
H = √113
As we know,
So,
Given then evaluate
B.
Given,
We know that, cosec2θ = 1 + cot2θ
In a right angle triangle ABC, right angle is at B, if then find the value of
A. sin A cosC + cos A sin C
We have
Given that, tan A = √3/1
And tan A is given by,
⇒
⇒ perpendicular = √3x and base = x
Then, we can use Pythagoras theorem in ∆ABC,
(hypotenuse)2 = (perpendicular)2 + (base)2
⇒ (hypotenuse)2 = (√3x)2 + (x)2
⇒ (hypotenuse)2 = 3x2 + x2 = 4x2
⇒ hypotenuse = √(4x2) = 2x
We have, AB = √3x, BC = x and AC = 2x.
Using these values,
⇒
⇒
⇒ …(i)
Similarly,
⇒
⇒ …(ii)
Also,
⇒
⇒
⇒ …(iii)
Similarly,
⇒
⇒ …(iv)
We have to solve: sin A cos C + cos A sin C.
Substituting equations (i), (ii), (iii) & (iv) in above,
sin A cos C + cos A sin C =
⇒ sin A cos C + cos A sin C = 1/4 + 3/4
⇒ sin A cos C + cos A sin C = 4/4 = 1
Thus, sin A cos C + cos A sin C = 1.
In a right angle triangle ABC, right angle is at B, if then find the value of
B. cos A cos C – sin A sin C
To find: cos A cos C – sin A sin C.
From previous part of the question, we have
Using these values, we get
cos A cos C – sin A sin C =
⇒ cos A cos C – sin A sin C = √3/4 - √3/4 = 0
Thus, cos A cos C – sin A sin C = 0.
Evaluate the following.
A. sin 45° + cos 45°
By trigonometric identities, we can say
sin 45° = 1/√2
and cos 45° = 1/√2
Adding them, we get
sin 45° + cos 45° = 1/√2 + 1/√2
⇒ sin 45° + cos 45° = 2/√2 = √2
Thus, sin 45° + cos 45° = √2.
Evaluate the following.
B.
Trigonometric identities:
cos 45° = 1/√2
sec 30° = 1/cos 30° = 2/√3 [∵, cos 30° = √3/2]
cosec 60° = 1/sin 60° = 2/√3 [∵, sin 60° = √3/2]
Putting the values we get,Evaluate the following.
C.
By trigonometric identities,
cot 45° = 1/tan 45° = 1/1 = 1
sec 30° = 1/cos 30° = 2/√3 [∵, cos 30° = √3/2]
cosec 60° = 1/sin 60° = 2/√3 [∵, sin 60° = √3/2]
sin 30° = 1/2
tan 45° = 1
cos 60° = 1/2
Putting all these values in , we get
Since, numerator is equal to denominator in the above calculation, we can say
Evaluate the following.
D. 2tan2 45° + cos2 30° - sin2 60°
By trigonometric identities,
sin 60° = √3/2
tan 45° = 1
cos 30° = √3/2
Putting these values in 2 tan2 45° + cos2 30° - sin2 60°, we get
2 tan2 45° + cos2 30° - sin2 60° = 2(1)2 + (√3/2)2 – (√3/2)2
⇒ 2 tan2 45° + cos2 30° - sin2 60° = 2
Thus, 2 tan2 45° + cos2 30° - sin2 60° = 2.
Evaluate the following.
E.
We have to solve:
Recall the trigonometric identities,
sin2 θ + cos2 θ = 1
& sec2 α – tan2 α = 1
Put θ = 30° and α = 60°, we get
sin2 30° + cos2 30° = 1
& sec2 60° - tan2 60° = 1
So,
Thus,
Choose the right option and justify your choice -
A)
A. sin 60°
B. cos 60°
C. tan 30°
D. sin 30°
we know,
tan 30° = 1/√3
tan 45° = 1
Then, putting these values in the question, we get
⇒
And we know, tan 30° = 1/√3
But, sin 60° = √3/2
cos 60° = 1/2
& sin 30° = 1/2
Thus, option (C) is correct.
Choose the right option and justify your choice -
B)
A. tan 90°
B. 1
C. sin 45°
D. 0
We know that,
tan 45° = 1
So, using this value of tangent, we can write
The answer has come out to be 0.
Thus, option (D) is correct.
Choose the right option and justify your choice -
C)
A. cos 60°
B. sin 60°
C. tan 60°
D. sin 30°
We know that,
tan 30° = 1/√3
So, using this value of tangent, we can write
⇒
⇒
⇒
⇒
⇒
And we know, tan 60° = √3
But, cos 60° = 1/2
sin 60° = √3/2
& sin 30° = 1/2
Thus, option (C) is correct.
Evaluate sin 60° cos 30° + sin 30°cos 60°. What is the value of sin(60° + 30°). What can you conclude?
Let us first solve sin 60° cos 30° + sin 30° cos 60°.
We know,
sin 60° = √3/2
cos 30° = √3/2
sin 30° = 1/2
& cos 60° = 1/2
So, sin 60° cos 30° + sin 30° cos 60° =
⇒ sin 60° cos 30° + sin 30° cos 60° =
⇒ sin 60° cos 30° + sin 30° cos 60° = 1 …(i)
Now, for sin (60° + 30°):
sin (60° + 30°) = sin 90°
⇒ sin (60° + 30°) = 1 [∵, sin 90° = 1] …(ii)
By equations (i) & (ii), we can conclude that
sin (60° + 30°) = sin 60° cos 30° + sin 30° cos 60°
And infact in general, let 60° = x and 30° = y. Then,
sin (x + y) = sin x cos y + sin y cos x
Is it right to say cos(60° + 30°) = cos 60° cos 30° - sin 60° sin 30°.
Let us solve Left-Hand-Side:
cos (60° + 30°) = cos 90°
⇒ cos (60° + 30°) = 0 [∵, cos 90° = 0]
Now, solve for Right-Hand-Side:
⇒
⇒ cos 60° cos 30° - sin 60° sin 30° = 0
In right angle triangle ΔPQR, right angle is at Q and PQ = 6cms ∠RPQ = 60°. Determine the lengths of QR and PR.
To find QR:
Since, tan θ = perpendicular/base
We know that,
⇒ [∵, PQ = 6 cm & tan 60° = √3]
⇒ QR = 6√3
Now, PR can be found by two ways -
1st method: In ∆PQR, using Pythagoras theorem,
PR2 = PQ2 + QR2 [∵, (hypotenuse)2 = (perpendicular)2 + (base)2]
⇒ PR2 = 62 + (6√3)2
⇒ PR2 = 36 + 108 = 144
⇒ PR = √144 = 12
2nd Method:
Since, cos θ = base/hypotenuse
We know that,
⇒
⇒
⇒ PR = 2 × PQ
⇒ PR = 2 × 6 = 12
Thus, QR = 6√3 cm and PR = 12 cm.
In right angle is at Y, YZ = x and XZ = 2x then determine ∠YXZ and ∠YZX.
We have
With given values, YZ = x and XZ = 2x, we can find out both angles.
For ∠YXZ:
Let ∠YXZ = θ, then
⇒
⇒
⇒ θ = sin-1(1/2)
⇒ θ = 30° [∵, sin 30° = 1/2]
For ∠YZX = α, then
⇒
⇒
⇒ α = cos-1(1/2)
⇒ α = 60° [∵, cos 60° = 1/2]
Is it right to say that sin(A + B) = Sin A + Sin B? Justify your answer.
No, it is not correct to say that sin (A + B) = sin A + sin B.
Justification: Let’s justify it by showing contradiction.
Let it be true that, sin (A + B) = sin A + sin B.
Now, let A = 30° and B = 60°
Then,
sin (30° + 60°) = sin 30° + sin 60°
⇒ sin 90° = sin 30° + sin 60°
⇒ 1 = 1/2 + √3/2
⇒ 1 = (1 + √3)/2
But, it’s not true.
1 ≠ (1 + √3)/2
Hence, we have a contradiction.
And therefore, it’s not right to say that sin (A + B) = sin A + sin B.
Evaluate
A)
By trigonometric identity, we have
tan (90° - θ) = cot θ
Replace θ = 54°
⇒ tan (90° - 54°) = cot 54°
⇒ tan 36° = cot 54° [∵, 90° - 54° = 36°]
Now,
⇒
Evaluate
B) cos 12° - sin 78°
By trigonometric identity, we can say
cos (90° - θ) = sin θ
Now, just replace θ by 78°.
We get
cos (90° - 78°) = sin 78°
⇒ cos 12° = sin 78° [∵, 90° - 78° = 12°]
Now, cos 12° - sin 78° = sin 78° - sin 78°
⇒ cos 12° - sin 78° = 0
Evaluate
C) cosec 31° - sec 59°
By trigonometric identity, we can say
cosec (90° - θ) = sec θ
Replace θ by 59°.
We get
cosec (90° - 59°) = sec 59°
⇒ cosec 31° = sec 59°
Now, cosec 31° - sec 59° = sec 59° - sec 59°
⇒ cosec 31° - sec 59° = 0
Evaluate
D) sin 15° sec 75°
By trigonometric identities, we can say
sin (90° - θ) = cos θ
And sec θ = 1/cos θ
Replace θ by 75°.
We get
sin (90° - 75°) = cos 75°
⇒ sin 15° = cos 75° [∵, 90° - 75° = 15°]
And sec 75° = 1/cos 75°
Using these values, we can solve the given expression.
sin 15° sec 75° = sin 15°/cos 75°
⇒ sin 15° sec 75° = cos 75°/cos 75°
⇒ sin 15° sec 75° = 1
Evaluate
E. tan 26° tan 64°
By trigonometric identities, we can say
tan (90° - θ) = cot θ
And tan θ = 1/cot θ
Replace θ by 64°.
We get
tan (90° - 64°) = cot 64°
⇒ tan 26° = cot 64° [∵, 90° - 64° = 26°]
And tan 64° = 1/cot 64°
Using these values, we can solve for the given expression.
tan 26° tan 64° = cot 64° tan 64°
⇒ tan 26° tan 64° = cot 64°/cot 64°
⇒ tan 26° tan 64° = 1
Show that
A. tan 48° tan16° tan 42° tan 74° = 1
We have
LHS = tan 48° tan 16° tan 42° tan 74° = (tan 48° tan 42°)(tan 16° tan 74°)
We know the trigonometric identities, we can say
tan (90° - θ) = cot θ
And tan θ = 1/cot θ
First, replace θ by 42°.
tan (90° - 42°) = cot 42°
⇒ tan 48° = cot 42° …(1)
And tan 42° = 1/cot 42° …(2)
Now, replace θ by 74°.
tan (90° - 74°) = cot 74°
⇒ tan 16° = cot 74° …(3)
And tan 74° = 1/cot 74° …(4)
Using equations (1), (2), (3) & (4), we get
LHS = tan 48° tan 16° tan 42° tan 74° = (tan 48° tan 42°)(tan 16° tan 74°)
= (cot 42°/cot 42°)(cot 74°/cot 74°)
= 1 = RHS
Thus, tan 48° tan 16° tan 42° tan 74° = 1.
Show that
B. cos36°cos54° - sin36°sin54°
We have
LHS = cos 36° cos 54° - sin 36° sin 54°
We know the trigonometric identity,
cos (90° - θ) = sin θ
First, replace θ by 54°.
We get, cos (90° - 54°) = sin 54°
⇒ cos 36° = sin 54° …(1)
Now, replace θ by 36°.
We get, cos (90° - 36°) = sin 36°
⇒ cos 54° = sin 36° …(2)
Using equations (1) & (2), we get
LHS = cos 36° cos 54° - sin 36° sin 54° = sin 54° sin 36° - sin 54° sin 36°
= 0 = RHS
Thus, cos 36° cos 54° - sin 36° sin 54° = 0.
If tan2A = cot(A – 18°) where 2A is an acute angle. Find the value of A.
Given that, 2A is an acute angle.
⇒ 2A < 90°
So, using trigonometric identity, we can say that
cot (90° - 2A) = tan 2A [∵, cot (90° - θ) = tan θ]
Now, replace tan 2A by cot (90° - 2A) in the given question.
tan 2A = cot (A – 18°)
⇒ cot (90° - 2A) = cot (A – 18°)
Now, we can compare the degrees from above, we get
90° - 2A = A – 18°
⇒ 2A + A = 90° + 18°
⇒ 3A = 108°
⇒ A = 108°/3
⇒ A = 36°
Thus, the value of A is 36°.
If tan A = cot B where A and B are acute angles, prove that A + B = 90°
Given that, A and B are acute angles.
⇒ A < 90° & B < 90°
So, using trigonometric identity, we can say
tan (90° - B) = cot B [∵, tan (90° - θ) = cot θ]
Replace cot B of RHS by tan (90° - B) in the given question.
tan A = cot B
⇒ tan A = tan (90° - B)
Now, comparing the degrees from the above, we get
A = 90° - B
⇒ A + B = 90°
Hence, proved that A + B = 90°.
If A, B and C are interior angles of a triangle ABC, then show that
If A, B and C are interior angles of ∆ABC, then we can say that
A + B + C = 180° (by angle sum property of a triangle)
⇒ A + B = 180° - C
Take LHS:
⇒
⇒
[∵, tan (90° - θ) = cot θ, where θ = C/2 here]
Hence, .
Express sin 75° + cos 65° in terms of trigonometric ratios of angles between 0o and 45o.
Given: sin 75° + cos 65°.
We can write,
75° = 90° - 15°
& 65° = 90° - 25°
Then, sin 75° + cos 65° = sin (90° - 15°) + cos (90° - 25°)
⇒ sin 75° + cos 65° = cos 15° + sin 25°
[∵, sin (90° - θ ) = cos θ & cos (90° - θ) = sin θ]
In cos 15° + sin 25°, 15° & 25° both are angles between 0° and 45°.
Thus, answer is sin 75° + cos 65° = cos 15° + sin 25°.
Evaluate the following :
A. (1 + tanθ + secθ)(1 + cotθ – cosecθ)
We have
⇒
⇒
⇒ [∵, (a + b)(a – b) = a2 – b2]
⇒ [∵, (a + b)2 = a2 + b2 + 2ab]
⇒ [∵, sin2 θ + cos2 θ = 1]
⇒
Thus, (1 + tan θ + sec θ)(1 + cot θ – cosec θ) = 2.
Evaluate the following :
B. (sinθ + cosθ)2 + (sinθ - cosθ)2
We have
(sin θ + cos θ)2 + (sin θ – cos θ)2 = ((sin θ + cos θ) + (sin θ – cos θ))2 – 2(sin θ + cos θ)(sin θ – cos θ) [∵, a2 + b2 = (a + b)2 – 2ab]
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = (sin θ + cos θ + sin θ – cos θ)2 – 2(sin2 θ – cos2 θ)
[∵, (a + b)(a – b) = a2 – b2]
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = (2 sin θ)2 – 2 sin2 θ + 2 cos2 θ
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 4 sin2 θ – 2 sin2 θ + 2 cos2 θ
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2 sin2 θ + 2 cos2θ
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2 (sin2 θ + cos2 θ)
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2 [∵, sin2 θ + cos2 θ = 1]
Thus, (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2.
Evaluate the following :
C. (sec2θ – 1) (cosec2θ – 1)
We have
⇒
⇒ [∵, (1 – cos2 θ) = sin2 θ & (1 – sin2 θ = cos2 θ]
⇒ (sec2 θ – 1)(cosec2 θ – 1) = 1
Thus, (sec2 θ – 1)(cosec2 θ – 1) = 1.
Show that
Using trigonometric identities,
cosec θ = 1/sin θ & cot θ = cos θ/sin θ
LHS = (cosec θ – cot θ)2
As we know, sin2 θ = 1 – cos2 θ
And (1 – cos2 θ) = (1 + cos θ)(1 – cos θ) [by (a2 – b2) = (a + b)(a – b)]
⇒ sin2 θ = (1 + cos θ)(1 – cos θ) …(i)
So, using equation (i),
LHS = (cosec θ – cot θ)2 =
= RHS
Hence, we have got
(cosec θ – cot θ)2 = .
Show that
Using trigonometric identity,
sin2 A + cos2 A = 1
⇒ cos2 A = 1 – sin2 A
Take Left hand side:
LHS =
= sec A + tan A = RHS
Thus, .
Show that
Using trigonometric identity, we have
cot A = 1/tan A
Take left hand side,
LHS =
= tan2 A = RHS
Thus, = tan2 A.
Show that
Take left hand side of the given question:
LHS = 1/cos θ – cos θ
= (1 – cos2 θ)/cos θ
= sin2 θ/cos θ [∵, sin2 θ + cos2 θ = 1 ⇒ sin2 θ = 1 – cos2 θ]
= sin θ × sin θ/cos θ
= sin θ × tan θ [∵, tan θ = sin θ/cos θ]
= tan θ sin θ = RHS
Thus, .
Simplify secA(1 – sinA)(secA + tanA)
By trigonometric identities, sec A = 1/cos A & tan A = sin A/cos A
Using these identities, we have
sec A (1 – sin A)(sec A + tan A) =
⇒ sec A (1 – sin A)(sec A + tan A) =
⇒ sec A (1 – sin A)(sec A + tan A) =
⇒ sec A (1 – sin A)(sec A + tan A) =
⇒ sec A (1 – sin A)(sec A + tan A) = [∵, sin2 A + cos2 A = 1 ⇒ cos2 A = 1 – sin2 A]
⇒ sec A (1 – sin A)(sec A + tan A) = 1
Thus, sec A (1 – sin A)(sec A + tan A) = 1.
Prove that (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Take left hand side of the given equation:
LHS = (sin A + cosec A)2 + (cos A + sec A)2
Expanding the squares by formula: (a + b)2 = a2 + b2 + 2ab= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2 cos A sec A
Rearranging the terms, we get,= (sin2 A + cos2 A) + 2 sin A cosec A + 2 cos A sec A + cosec2 A + sec2 A
we know that,
=
=
= 5 + 1/(sin2 A cos2 A) …(i)
Now, take right hand side of the equation:
RHS = 7 + tan2 A + cot2 A
=
=
=
=
= 5 + 1/(sin2 A cos2 A) …(ii)
From equation (i) & (ii),
LHS = RHS
Hence, proved.
Simplify (1 – cosθ) (1 + cosθ) (1 + cot2θ)
We have
(1 – cos θ)(1 + cos θ)(1 + cot2 θ) = [(1 – cos θ)(1 + cos θ)](1 + cot2 θ)
⇒ (1 – cos θ)(1 + cos θ)(1 + cot2 θ) = (1 – cos2 θ)(1 + cot2 θ) [∵, (a + b)(a – b) = a2 – b2]
⇒ (1 – cos θ)(1 + cos θ)(1 + cot2 θ) = sin2 θ × (1 + cos2 θ/sin2 θ) [∵, (1 – cos2 θ) = sin2 θ & cot2 θ = cos2 θ/sin2 θ]
⇒ (1 – cos θ)(1 + cos θ)(1 + cot2 θ) = sin2 θ × (sin2 θ + cos2 θ)/sin2 θ
⇒ (1 – cos θ)(1 + cos θ)(1 + cot2 θ) = sin2 θ + cos2 θ
⇒ (1 – cos θ)(1 + cos θ)(1 + cot2 θ) = 1 [∵, sin2 θ + cos2 θ = 1]
Thus, (1 – cos θ)(1 + cos θ)(1 + cot2 θ) = 1.
If secθ + tanθ = p, then what is the value of secθ – tanθ ?
Given that, sec θ + tan θ = p.
By trigonometric identity, we have
sec2 θ – tan2 θ = 1
So, sec2 θ – tan2 θ = 1
⇒ (sec θ – tan θ) (sec θ + tan θ) = 1
⇒ sec θ – tan θ = 1/(sec θ + tan θ)
⇒ sec θ – tan θ = 1/p [given]
Hence, sec θ – tan θ = 1/p.
If cosesθ + cotθ = k then prove that
Given that, cosec θ + cot θ = k
⇒ [∵, cosec θ = 1/sin θ & cot θ = cos θ/sin θ]
⇒ (1 + cos θ)/sin θ = k
⇒ 1 + cos θ = k sin θ
Squaring both sides, we get
(1 + cos θ)2 = (k sin θ)2
⇒ (1 + cos θ)2 = k2 sin2 θ
⇒ (1 + cos θ)2 = k2 (1 – cos2 θ) [∵, sin2 θ + cos2 θ = 1 ⇒ sin2 θ = 1 – cos2 θ]
⇒ (1 + cos θ)2 = k2 (1 – cos θ) (1 + cos θ) [∵, a2 – b2 = (a + b) (a – b)]
⇒ 1 + cos θ = k2 (1 – cos θ)
⇒ 1 + cos θ = k2 – k2 cos θ
⇒ k2 cos θ + cos θ = k2 – 1
⇒ cos θ (k2 + 1) = k2 – 1
⇒ cos θ = (k2 – 1)/(k2 + 1)
Thus, cos θ = (k2 – 1)/(k2 + 1).
Hence, proved.